Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 2004-Sep

Endogenous formation of morphine in human cells.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Chotima Poeaknapo
Jürgen Schmidt
Matthias Brandsch
Birgit Dräger
Meinhart H Zenk

Maneno muhimu

Kikemikali

Morphine is a plant (opium poppy)-derived alkaloid and one of the strongest known analgesic compounds. Studies from several laboratories have suggested that animal and human tissue or fluids contain trace amounts of morphine. Its origin in mammals has been believed to be of dietary origin. Here, we address the question of whether morphine is of endogenous origin or derived from exogenous sources. Benzylisoquinoline alkaloids present in human neuroblastoma cells (SH-SY5Y) and human pancreas carcinoma cells (DAN-G) were identified by GC/tandem MS (MS/MS) as norlaudanosoline (DAN-G), reticuline (DAN-G and SH-SY5Y), and morphine (10 nM, SH-SY5Y). The stereochemistry of reticuline was determined to be 1-(S). Growth of the SH-SY5Y cell line in the presence of (18)O(2) led to the [(18)O]-labeled morphine that had the molecular weight 4 mass units higher than if grown in (16)O(2), indicating the presence of two atoms of (18)O per molecule of morphine. Growth of DAN-G cells in an (18)O(2) atmosphere yielded norlaudanosoline and (S)-reticuline, both labeled at only two of the four oxygen atoms. This result clearly demonstrates that all three alkaloids are of biosynthetic origin and suggests that norlaudanosoline and (S)-reticuline are endogenous precursors of morphine. Feeding of [ring-(13)C(6)]-tyramine, [1-(13)C, N-(13)CH(3)]-(S)-reticuline and [N-CD(3)]-thebaine to the neuroblastoma cells led each to the position-specific labeling of morphine, as established by GC/MS/MS. Without doubt, human cells can produce the alkaloid morphine. The studies presented here serve as a platform for the exploration of the function of "endogenous morphine" in the neurosciences and immunosciences.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge