Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Clinical Monitoring and Computing 2015-Dec

Evaluation of near-infrared spectroscopy under apnea-dependent hypoxia in humans.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Lars Eichhorn
Felix Erdfelder
Florian Kessler
Jonas Doerner
Marcus O Thudium
Rainer Meyer
Richard K Ellerkmann

Maneno muhimu

Kikemikali

In this study we investigated the responsiveness of near-infrared spectroscopy (NIRS) recordings measuring regional cerebral tissue oxygenation (rSO2) during hypoxia in apneic divers. The goal was to mimic dynamic hypoxia as present during cardiopulmonary resuscitation, laryngospasm, airway obstruction, or the "cannot ventilate cannot intubate" situation. Ten experienced apneic divers performed maximal breath hold maneuvers under dry conditions. SpO2 was measured by Masimo™ pulse oximetry on the forefinger of the left hand. NIRS was measured by NONIN Medical's EQUANOX™ on the forehead or above the musculus quadriceps femoris. Following apnea median cerebral rSO2 and SpO2 values decreased significantly from 71 to 54 and from 100 to 65%, respectively. As soon as cerebral rSO2 and SpO2 values decreased monotonically the correlation between normalized cerebral rSO2 and SpO2 values was highly significant (Pearson correlation coefficient = 0.893). Prior to correlation analyses, the values were normalized by dividing them by the individual means of stable pre-apneic measurements. Cerebral rSO2 measured re-saturation after termination of apnea significantly earlier (10 s, SD = 3.6 s) compared to SpO2 monitoring (21 s, SD = 4.4 s) [t(9) = 7.703, p < 0.001, r(2) = 0.868]. Our data demonstrate that NIRS monitoring reliably measures dynamic changes in cerebral tissue oxygen saturation, and identifies successful re-saturation faster than SpO2. Measuring cerebral rSO2 may prove beneficial in case of respiratory emergencies and during pulseless situations where SpO2 monitoring is impossible.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge