Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemical Analysis 2017-May

Exploring β-Tubulin Inhibitors from Plant Origin using Computational Approach.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Kanika Verma
Kaavya Kannan
Shanthi V
Sethumadhavan R
Karthick V
Ramanathan K

Maneno muhimu

Kikemikali

BACKGROUND

β-Tubulin is an important target for the binding of anti-cancer drugs, in particular, paclitaxel (taxol), vinblastine and epothilone. However, mutations in β-tubulin structure give resistance to chemotherapeutic agents. Notably, mutations at R306C, F270 V, L217R, L228F, A185T and A248V positions in β-tubulin give high resistance for paclitaxel binding.

OBJECTIVE

To discover novel inhibitors of β-tubulin from natural sources, particularly alkaloids, using a virtual screening approach.

METHODS

A virtual screening approach was employed to find potent lead molecules from the Naturally-occurring Plant-based Anti-cancer Compound-activity Target (NPACT) database. Alkaloids have great potential to be anti-cancer agents. Therefore, we have screened all alkaloids from a total of 1574 molecules from the NPACT database for our study. Initially, Molinspiration and DataWarrior programs were utilised to calculate pharmacokinetics and toxicity risks of the alkaloids, respectively. Subsequently, AutoDock algorithm was employed to understand the binding efficiency of alkaloids against β-tubulin. The binding affinity of the docked complex was confirmed by means of an intermolecular interaction study. Moreover, oral toxicity was predicted by using ProTox program. Further, metabolising capacity of drugs was studied by using SmartCYP software. Additionally, scaffold analysis was done with the help of scaffold trees and dendrograms, providing knowledge about the building blocks for parent-compound synthesis.

RESULTS

Overall, the results of our computational analysis indicate that isostrychnine, obtained from Strychnosnux-vomica, satisfies pharmacokinetic and bioavailability properties, binds efficiently with β-tubulin. Thus, it could be a promising lead for the treatment of paclitaxel resistant cancer types.

CONCLUSIONS

This is the first observation of inhibitory activity of isostrychnine against β-tubulin and warrants further experimental investigation. Copyright © 2016 John Wiley & Sons, Ltd.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge