Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological Chemistry 2013-Apr

Hypoxia-inducible factor prolyl 4-hydroxylases: common and specific roles.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Johanna Myllyharju
Peppi Koivunen

Maneno muhimu

Kikemikali

Hypoxia-inducible transcription factor (HIF), an αβ dimer, is the key inducer of hypoxia-responsive genes that operate both during normal development and pathological processes in association with decreased oxygen availability. The products of HIF target genes function in, e.g., hematopoiesis, angiogenesis, iron transport, glucose utilization, resistance to oxidative stress, cell proliferation, survival and apoptosis, extracellular matrix homeostasis, and tumorigenesis and metastasis. HIF is accumulated in hypoxia, whereas it is rapidly degraded in normoxic cells. The oxygen-sensing mechanism behind this phenomenon is provided by HIF prolyl 4-hydroxylases (HIF-P4Hs, commonly known as PHDs and EglNs) that require oxygen in their reaction. In normoxia, two prolines in the oxygen-dependent degradation domain of the HIFα subunit become hydroxylated by the HIF-P4Hs. The 4-hydroxyproline residues formed serve as recognition sites for the von Hippel-Lindau E3 ubiquitin ligase complex and result in subsequent ubiquitination and instant proteasomal degradation of HIFα in normoxia. The HIF-P4H reaction is inhibited in hypoxia. HIFα evades degradation and forms a functional dimer with HIFβ, leading to activation of the HIF target genes. The central role of HIF-P4Hs in the regulation of the hypoxia response pathway has provided an attractive possibility as a drug candidate for treatment of, e.g., severe anemias and ischemic conditions, and several companies are currently carrying out clinical studies on the use of HIF-P4H inhibitors to treat anemia in patients with a kidney disease. Therefore, it is important to understand the effects of individual HIF-P4H isoenzymes on the hypoxia response and potential other pathways in vivo. The common and specific functions of the HIF-P4H isoenzymes are discussed in this review on the basis of available data from cell biological studies and gene-modified animals.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge