Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Research in Toxicology 2016-05

Impact of Functional Group Modifications on Designer Phenethylamine Induced Hyperthermia.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Gregory G Grecco
Jon E Sprague

Maneno muhimu

Kikemikali

The popularity of designer phenethylamines such as synthetic cathinones ("bath salts") has led to increased reports of life-threatening hyperthermia. The diversity of chemical modifications has resulted in the toxicological profile of most synthetic cathinones being mostly uncharacterized. Here, we investigated the thermogenic effects of six recently identified designer phenethylamines (4-methylmethamphetamine, methylone, mephedrone, butylone, pentylone, and MDPV) and compared these effects to the established thermogenic agent 3,4-methylenedioxymethamphetamine (MDMA). Specifically, we determined the impact of a β-ketone, α-alkyl, or pyrrolidine functional group on core-body temperature changes. Sprague-Dawley rats (n = 5-6) were administered a dose (30 mg/kg, sc) of a designer phenethylamine or MDMA, and core body temperature measurements were recorded at 30 min intervals for 150 min post treatment. MDMA elicited the greatest maximum temperature change (ΔTmax), and this effect was significantly greater than that of its β-ketone analogue, methylone. Temperature-area under the curves (TAUCs) and ΔTmax were also significantly different between 4-methylmethamphetamine (4-MMA) and its β-ketone analogue mephedrone. Lengthening the α-alkyl chain of methylone to produce butylone and pentylone significantly attenuated the thermogenic response on both TAUCs and ΔTmax compared to those of methylone; however, butylone and pentylone were not different from each other. Pyrrolidine substitution on the N-terminus of pentylone produces 3,4-methylenedioxypyrovalerone (MDPV), which did not significantly alter core body temperature. Thermogenic comparisons of MDMA vs methylone and 4-MMA vs mephedrone indicate that oxidation at the benzylic position significantly attenuates the hyperthermic response. Furthermore, either extending the α-alkyl chain to ethyl and propyl (butylone and pentylone, respectively) or extending the α-alkyl chain and adding a pyrrolidine on the N-terminus (MDPV) significantly blunted the thermogenic effects of methylone. Overall, the present study provides the first structure-activity relationship in vivo toxicological analysis of designer phenethylamines.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge