Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Carbohydrate Polymers 2013-Sep

Mineralized cyclodextrin nanoparticles for sustained protein delivery.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Maharajan Sivasubramanian
Thavasyappan Thambi
Jae Hyung Park

Maneno muhimu

Kikemikali

The extensive therapeutic potential of protein drugs has been severely limited by their instability and short biological half-lives in vivo. To prolong their therapeutic effects, a sustained delivery system is required. In this study, cyclodextrin-based polymeric nanoparticles (CD-NPs), mineralized by calcium phosphate as the diffusion barrier, were developed as a carrier for sustained protein delivery. Spherical CD-NPs were readily prepared by a conjugate, composed of β-CD as the protein-binding moiety and carboxymethyl dextran as the substrate for mineralization in a physiological solution. Owing to the presence of carboxylic acids in CD-NPs, they were effectively mineralized by sequential addition of calcium nitrate and ammonium phosphate. The physicochemical characteristics of mineralized CD-NPs were characterized using FT-IR, thermogravimetric analysis, transmission electron microscopy and energy dispersive X-ray photoelectron spectroscopy. Mineralization reduced CD-NP particle size from 310 nm to 121 nm in PBS (pH 7.4) indicating the formation of compact nanoparticles. Carbonic anhydrase B (CAB), chosen as the model protein, was loaded into the mineralized CD-NPs with a high loading efficiency (80%) by a simple dialysis method. In vitro release tests showed that CAB was completely released from bare CD-NPs in 3 days. Interestingly, the mineralized CD-NPs released CAB in a sustained manner for 21 days, which was due to the stable calcium phosphate barrier inhibiting CAB release. The enzymatic activity of CAB, which was released from the nanoparticles, did not significantly deteriorate compared to native CAB. Overall, mineralized CD-NPs could be a promising carrier for sustained protein delivery.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge