Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cellular Physiology and Biochemistry 2018

Molecular Insights into hERG Potassium Channel Blockade by Lubeluzole.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Roberta Gualdani
Maria Maddalena Cavalluzzi
Francesco Tadini-Buoninsegni
Marino Convertino
Philippe Gailly
Anna Stary-Weinzinger
Giovanni Lentini

Maneno muhimu

Kikemikali

OBJECTIVE

Lubeluzole is a benzothiazole derivative that has shown neuroprotective properties in preclinical models of ischemic stroke. However, clinical research on lubeluzole is now at a standstill, since lubeluzole seems to be associated with the acquired long QT syndrome and ventricular arrhythmias. Since the cardiac cellular effects of lubeluzole have not been described thus far, an explanation for the lubeluzole-induced QT interval prolongation is lacking.

METHODS

We tested the affinity of lubeluzole, its enantiomer, and the racemate for hERG channel using the patch-clamp technique. We synthesized and tested two simplified model compounds corresponding to two moieties included in the lubeluzole structure. The obtained experimental results were rationalized by docking simulation on the recently reported cryo-electron microscopy (cryo-EM) structure of hERG. Group efficiency analysis was performed in order to individuate the fragment most contributing to binding.

RESULTS

We found that lubeluzole and its R enantiomer are highly potent inhibitors of human ether-ago-go-related gene (hERG) channel with an IC50 value of 12.9 ± 0.7 nM and 11.3 ± 0.8 nM, respectively. In the presence of lubeluzole, steady-state activation and inactivation of hERG channel were shifted to more negative potentials and inactivation kinetics was accelerated. Mutations of aromatic residues (Y652A and F656A) in the channel inner cavity significantly reduced the inhibitory effect of lubeluzole. Molecular docking simulations performed on the near atomic resolution cryo-electron microscopy structures of hERG supported the role of Y652 and F656 as the main contributors to high affinity binding. Group efficiency analysis indicated that both 1,3-benzothiazol-2-amine and 3-aryloxy-2-propanolamine moieties contribute to drug binding with the former giving higher contribution.

CONCLUSIONS

This study suggests the possibility to modulate lubeluzole hERG blockade by introducing suitable substituents onto one or both constituting portions of the parent compound in order to either reduce potency (i. e. torsadogenic potential) or potentiate affinity (useful for class III antiarrhythmic and anticancer agent development).

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge