Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2009-Jun

Nitric oxide inhibitory principles from Derris trifoliata stems.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Supinya Tewtrakul
Sarot Cheenpracha
Chatchanok Karalai

Maneno muhimu

Kikemikali

Nine rotenoids were isolated from the hexane and dichloromethane extracts of Derris trifoliata stems and were tested for nitric oxide (NO) inhibitory activity using RAW264.7 cells. The result indicated that 12a-hydroxyrotenone (7) possessed very potent NO inhibitory activity with an IC(50) value of 0.002 microM, followed by 1 (deguelin, IC(50)=0.008 microM), 9 (12a-hydroxyelliptone, IC(50)=0.010 microM) and 2 (alpha-toxicarol, IC(50)=0.013 microM), respectively. In addition, the DPPH scavenging activity of rotenoids was also investigated. It was found that 6a,12a-dehydrodeguelin (5) possessed the highest activity against DPPH with an IC(50) value of 7.4 microM, followed by deguelin (1, IC(50)=27.4 microM). All compounds did not show any cytotoxicity at their IC(50) values for NO inhibitory activity. Structure-activity relationships (SARs) of these rotenoids against NO release are as follows: (1) hydroxylation at C12a dramatically increased activity, (2) prenylation at furan ring increased activity markedly and (3) hydrogenation of a double bond at C6a-C12a conferred higher activity. For the DPPH radical scavenging effect, it was found that (1) introduction of a double bond at C6a-C12a increased activity and (2) hydroxylation of C11 at the D-ring decreased activity. As regards active compounds of Derris trifoliata stems, the isolated compounds are responsible for the NO inhibitory effect, especially 7, 1, 9 and 2, whereas 5 and 1 are those for the DPPH scavenging activity.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge