Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Der Unfallchirurg 2017-Sep

[Pathophysiology of intracranial injuries].

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
D Lahner
G Fritsch

Maneno muhimu

Kikemikali

Traumatic brain injury (TBI) constitutes a heterogeneous condition that affects the most complex organ of the human body. It is commonly classified by its location as focal injury (e.g. epidural hematoma) and diffuse injury (e.g. diffuse axonal shearing injury) as well as by primary and secondary tissue injury. Accordingly, direct mechanical force causes the primary insult. The tissue damage occurring afterwards is subsumed under the term secondary brain damage. Some of these processes are overlapping and include in the early phase local cerebral ischemia resulting in excitotoxicity, which together with the triggered neuroinflammatory cascade causes the formation of cerebral edema and ultimately increased intracranial pressure once the intracranial compliance is exhausted. In survivors the long-term sequelae of the late stage include seizures caused by synaptic reorganization (incidence depending on the severity of TBI), persistent neuroinflammation promoting further neurodegeneration and increased risk for Alzheimer's disease probably because of TBI-related protein misfolding (tauopathy). Acute phase biomarkers of TBI should ideally originate from the injured brain. They should help distinguish disease severity and predict morbidity and mortality; however, the most commonly used biomarkers (S-100β and neurone-specific enolase) show a low specificity. In theory their successors (i. e. GFAP, pNF-H) seem more specific; however, these "new kids on the block" still need to be thoroughly investigated in large scale studies.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge