Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2005-Jun

Patterns of protein oxidation in Arabidopsis seeds and during germination.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Claudette Job
Loïc Rajjou
Yoann Lovigny
Maya Belghazi
Dominique Job

Maneno muhimu

Kikemikali

Increased cellular levels of reactive oxygen species are known to occur during seed development and germination, but the consequences in terms of protein degradation are poorly characterized. In this work, protein carbonylation, which is an irreversible oxidation process leading to a loss of function of the modified proteins, has been analyzed by a proteomic approach during the first stages of Arabidopsis (Arabidopsis thaliana) seed germination. In the dry mature seeds, the legumin-type globulins (12S cruciferins) were the major targets. However, the acidic alpha-cruciferin subunits were carbonylated to a much higher extent than the basic (beta) ones, consistent with a model in which the beta-subunits are buried within the cruciferin molecules and the alpha-subunits are more exposed to the outside. During imbibition, various carbonylated proteins accumulated. This oxidation damage was not evenly distributed among seed proteins and targeted specific proteins as glycolytic enzymes, mitochondrial ATP synthase, chloroplastic ribulose bisphosphate carboxylase large chain, aldose reductase, methionine synthase, translation factors, and several molecular chaperones. Although accumulation of carbonylated proteins is usually considered in the context of aging in a variety of model systems, this was clearly not the case for the Arabidopsis seeds since they germinated at a high rate and yielded vigorous plantlets. The results indicate that the observed specific changes in protein carbonylation patterns are probably required for counteracting and/or utilizing the production of reactive oxygen species caused by recovery of metabolic activity in the germinating seeds.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge