Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2007-Aug

Peroxisomal metabolism of propionic acid and isobutyric acid in plants.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Kerry A Lucas
Jessica R Filley
Jeremy M Erb
Eric R Graybill
John W Hawes

Maneno muhimu

Kikemikali

The subcellular sites of branched-chain amino acid metabolism in plants have been controversial, particularly with respect to valine catabolism. Potential enzymes for some steps in the valine catabolic pathway are clearly present in both mitochondria and peroxisomes, but the metabolic functions of these isoforms are not clear. The present study examined the possible function of these enzymes in metabolism of isobutyryl-CoA and propionyl-CoA, intermediates in the metabolism of valine and of odd-chain and branched-chain fatty acids. Using (13)C NMR, accumulation of beta-hydroxypropionate from [2-(13)C]propionate was observed in seedlings of Arabidopsis thaliana and a range of other plants, including both monocots and dicots. Examination of coding sequences and subcellular targeting elements indicated that the completed genome of A. thaliana likely codes for all the enzymes necessary to convert valine to propionyl-CoA in mitochondria. However, Arabidopsis mitochondria may lack some of the key enzymes for metabolism of propionyl-CoA. Known peroxisomal enzymes may convert propionyl-CoA to beta-hydroxypropionate by a modified beta-oxidation pathway. The chy1-3 mutation, creating a defect in a peroxisomal hydroxyacyl-CoA hydrolase, abolished the accumulation of beta-hydroxyisobutyrate from exogenous isobutyrate, but not the accumulation of beta-hydroxypropionate from exogenous propionate. The chy1-3 mutant also displayed a dramatically increased sensitivity to the toxic effects of excess propionate and isobutyrate but not of valine. (13)C NMR analysis of Arabidopsis seedlings exposed to [U-(13)C]valine did not show an accumulation of beta-hydroxypropionate. No evidence was observed for a modified beta-oxidation of valine. (13)C NMR analysis showed that valine was converted to leucine through the production of alpha-ketoisovalerate and isopropylmalate. These data suggest that peroxisomal enzymes for a modified beta-oxidation of isobutyryl-CoA and propionyl-CoA could function for metabolism of substrates other than valine.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge