Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Muscle Research and Cell Motility 2009-Dec

Proteomic profiling of x-linked muscular dystrophy.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Caroline Lewis
Steven Carberry
Kay Ohlendieck

Maneno muhimu

Kikemikali

Progressive x-linked muscular dystrophy represents the most commonly inherited neuromuscular disorder in humans. Although the disintegration of the dystrophin-associated glycoprotein complex triggers the initial pathogenesis of Duchenne muscular dystrophy, secondary alterations in metabolic pathways, cellular signaling and the regulation of ion homeostasis are probably crucial factors that cause end-stage fibre degeneration. The application of mass spectrometry-based proteomics for the global cataloguing of muscle biomarkers has recently been applied to the analysis of the mdx animal model of muscular dystrophy and the biochemical evaluation of experimental exon skipping therapy. The fluorescence difference in-gel electrophoretic analysis of normal versus mdx diaphragm muscle revealed changed expression levels of proteins involved in nucleotide metabolism, Ca 2+-handling, the cellular stress response and key bioenergetic processes. The swift up-regulation of small heat shock proteins, such as cvHsp, seems to form an integral part of the repair mechanisms in dystrophic fibres and may be exploitable as a new option to treat inherited muscle degeneration. Importantly, the mass spectrometry-based profiling of mdx muscle following the specific removal of exon 23 in the mutated dystrophin gene transcript showed a partial reversal of important secondary changes. Experimental exon skipping restored the expression of the dystrophin isoform Dp427, its associated glycoprotein beta-dystroglycan, neuronal nitric oxide synthase, calsequestrin, adenylate kinase and the muscle-specific stress protein cvHsp. In the future, a well defined set of signature molecules could be used to improve diagnosis, monitor disease progression, identify new therapeutic pathways, and validate the effects of novel drugs or experimental treatments such as gene therapy.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge