Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomaterials 2008-Dec

Soft tissue reactions evoked by implanted gallium phosphide.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Cecilia E Linsmeier
Lars Wallman
Linda Faxius
Jens Schouenborg
Lars M Bjursten
Nils Danielsen

Maneno muhimu

Kikemikali

Neural devices may play an important role in the diagnosis and therapy of several clinical conditions, such as stroke, trauma or neurodegenerative disorders, by facilitating motor and pain control. Such interfaces, chronically implanted in the CNS, need to be biocompatible and have the ability to stimulate and record nerve signals. However, neural devices of today are not fully optimized. Nanostructured surfaces may improve electrical properties and lower evoked tissue responses. Vertical gallium phosphide (GaP) nanowires epitaxially grown from a GaP surface is one way of creating nanostructured electrodes. Thus, we chose to study the soft tissue reactions evoked by GaP surfaces. GaP and the control material titanium (Ti) were implanted in the rat abdominal wall for evaluation of tissue reactions after 1, 6, or 12 weeks. The foreign-body response was evaluated by measuring the reactive capsule thickness and by quantification of ED1-positive macrophages and total cells in the capsule. Furthermore, the concentration of Ga was measured in blood, brain, liver and kidneys. Statistically significant differences were noticed between GaP and Ti at 12 weeks for total and ED1-positive cell densities in the capsule. The chemical analysis showed that the concentration of Ga in brain, liver and kidneys increased during 12 weeks of implantation, indicating loss of Ga from the implant. Taken together, our results show that the biocompatible properties of GaP are worse than those of the well-documented biomaterial Ti.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge