Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The FEBS journal 2019-May

Structural, biochemical and biophysical characterization of recombinant human fumarate hydratase.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Mariana Aleixo
Victor Rangel
Joane Rustiguel
Ricardo de Pádua
Maria Nonato

Maneno muhimu

Kikemikali

Fumarate hydratases (FHs, fumarases) catalyze the reversible conversion of fumarate into l-malate. FHs are distributed over all organisms and play important roles in energy production, DNA repair and as tumor suppressors. They are very important targets both in the study of human metabolic disorders and as potential therapeutic targets in neglected tropical diseases and tuberculosis. In this study, human FH (HsFH) was characterized by using enzyme kinetics, differential scanning fluorimetry and X-ray crystallography. For the first time, the contribution of both substrates was analyzed simultaneously in a single kinetics assay allowing to quantify the contribution of the reversible reaction for kinetics. The protein was crystallized in the spacegroup C2221 , with unit-cell parameters a = 125.43, b = 148.01, c = 129.76. The structure was solved by molecular replacement and refined at 1.8 Å resolution. In our study, a HEPES molecule was found to interact with HsFH at the C-terminal domain (Domain 3), previously described as involved in allosteric regulation, through a set of interactions that includes Lys 467. HsFH catalytic efficiency is higher when in the presence of HEPES. Mutations at residue 467 have already been implicated in genetic disorders caused by FH deficiency, suggesting that the HEPES-binding site may be important for enzyme kinetics. This study contributes to the understanding of the HsFH structure and how it correlates with mutation, enzymatic deficiency and pathology.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge