Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Critical reviews in neurobiology 2006

Surviving anoxia: a tale of two white matter tracts.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Selva Baltan

Maneno muhimu

Kikemikali

Successful axon function is vital to the overall performance of the central nervous system (CNS). White matter (WM) axons are dependent on constant supply of oxygen and glucose to transmit signals with high fidelity. The optic nerve is a pure WM tract composed of completely myelinated axons while corpus callosum (CC) slices contain both gray and WM portions of the brain with a mixture of myelinated and unmyelinated axons. Axon function in both WM tracts is resistant to anoxia with a subset of axons able to survive exclusively on energy generated by glycolysis. In mouse optic nerves (MONs), removal of glucose during anoxia causes complete loss of axon function, implicating glucose as the sole source of energy. In contrast, in rat optic nerve (RON), anoxia causes rapid and complete loss of function. Because RON is about twice the diameter of MON, glucose diffusion during anoxia is inadequate. Increasing bath glucose concentration restores the ability of RON axons to persist during anoxia. Although in 10 mM glucose, MONs and CC slices exhibit identical resistance to anoxia, 30 mM glucose unmasks the greater resistance of CC axons suggesting unmyelinated axons and/or the smallest axons with the thinnest myelin sheath are resistant to anoxia. These results reveal that CNS WM is remarkably tolerant of anoxia although there is regional variability in their ability to function and survive anoxia. To achieve optimal protection of the CNS in various neurological diseases, it is critical to understand the properties of regional energy metabolisms and injury mechanisms for successful therapeutic approaches.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge