Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physical Chemistry Chemical Physics 2014-Jul

Synthesis of rare earth doped yttrium-vanadate nanoparticles encapsulated within apoferritin.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Tomoaki Harada
Hideyuki Yoshimura

Maneno muhimu

Kikemikali

Luminescent europium (Eu) and dysprosium (Dy) doped yttrium-vanadate (Y-V) nanoparticles (NPs) were synthesized in the cavity of the protein, apoferritin. Y-V NPs were synthesized by incubating a solution of apoferritin with Y(3+) and VO3(-) ions in the presence of ethylene diamine-N-N'-diacetic acid (EDDA). EDDA plays an important role in preventing Y-vanadate precipitation in bulk solution by chelating the Y(3+) ions. Using high resolution electron microscopy, the obtained NPs in the apoferritin cavities were confirmed to be amorphous, and to consist of Y and V. Eu-doped Y-V (Y-V:Eu) NPs were synthesized by the same procedure as Y-V NPs, except that Eu(NO3)3 was added. Y-V:Eu NPs exhibited a strong absorption peak due to the O-V charge transfer transition and remarkable luminescence at 618 nm due to the (5)D0 → (7)F2 transition. The luminescence lifetime of Y:Eu and Y-V:Eu NPs measured in H2O and D2O solution showed reduction of non-radiative transition to the O-H vibration in Y-V:Eu NPs. Accordingly, Y-V NPs showed strong luminescence compared to Y:Eu NPs. Dy-doped Y-V NPs were also synthesized in apoferritin cavities and showed luminescence peaks at 482 nm and 572 nm, corresponding to (4)F9/2 → (6)H15/2 and (4)F9/2 → (6)H13/2 transitions. These NPs stably dispersed in water solution since their aggregation was prevented by the protein shell. NPs encapsulated in the protein are likely to be biocompatible and would have significant potential for biological imaging applications.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge