Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Biology 2018-Aug

The role of alanine and aspartate aminotransferases in C4 photosynthesis.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
U Schlüter
A Bräutigam
J-M Droz
J Schwender
A P M Weber

Maneno muhimu

Kikemikali

Alanine and aspartate are essential transfer metabolites for C4 species of the NAD-malic enzyme and phosphoenolpyruvate carboxykinase subtype. To some degree both amino acids are also part of the metabolite shuttle in NADP-malic enzyme plants. In comparison with C3 species, the majority of C4 species are therefore characterised by enhanced expression and activity of alanine and aspartate aminotransferases (AT) in the photosynthetically active tissue. Both enzymes exist in multiple copies and have been found in different subcellular compartments. We tested whether different C4 species show preferential recruitment of enzymes from specific lineages and subcellular compartments. Phylogenetic analysis of alanine and aspartate ATs from a variety of monocot and eudicot C4 species and their C3 relatives was combined with subcellular prediction tools and analysis of the subsequent transcript amounts in mature leaves. Recruitment of aspartate AT from a specific subcellular compartment was strongly connected to the biochemical subtype. Deviation from the main model was however observed in Gynandropsis gynandra. The configuration of alanine AT generally differed in monocot and eudicot species. C4 monocots recruited an alanine AT from a specific cytosolic branch, but eudicots use alanine AT copies from a mitochondrial branch. Generally, plants display high plasticity in the setup of the C4 pathway. Beside the common models for the different C4 subtypes, individual solutions were found for plant groups or lineages.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge