Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Cancer 2016-Mar

The synthetic retinoid ST1926 as a novel therapeutic agent in rhabdomyosarcoma.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Hussein Basma
Sandra E Ghayad
Ghina Rammal
Angelo Mancinelli
Mohammad Harajly
Farah Ghamloush
Loai Dweik
Rabab El-Eit
Hassan Zalzali
Wissam Rabeh

Maneno muhimu

Kikemikali

Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. Despite multiple attempts at intensifying chemotherapeutic approaches to treatment, only moderate improvements in survival have been made for patients with advanced disease. Retinoic acid is a differentiation agent that has shown some antitumor efficacy in RMS cells in vitro; however, the effects are of low magnitude. E-3-(4'-hydroxyl-3'-adamantylbiphenyl-4-yl) acrylic acid (ST1926) is a novel orally available synthetic atypical retinoid, shown to have more potent activity than retinoic acid in several types of cancer cells. We used in vitro and in vivo models of RMS to explore the efficacy of ST1926 as a possible therapeutic agent in this sarcoma. We found that ST1926 reduced RMS cell viability in all tested alveolar (ARMS) and embryonal (ERMS) RMS cell lines, at readily achievable micromolar concentrations in mice. ST1926 induced an early DNA damage response (DDR), which led to increase in apoptosis, in addition to S-phase cell cycle arrest and a reduction in protein levels of the cell cycle kinase CDK1. Effects were irrespective of TP53 mutational status. Interestingly, in ARMS cells, ST1926 treatment decreased PAX3-FOXO1 fusion oncoprotein levels, and this suppression occurred at a post-transcriptional level. In vivo, ST1926 was effective in inhibiting growth of ARMS and ERMS xenografts, and induced a prominent DDR. We conclude that ST1926 has preclinical efficacy against RMS, and should be further developed in this disease in clinical trials.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge