Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Molecular Medicine 2004-Mar

White matter injury mechanisms.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Peter K Stys

Maneno muhimu

Kikemikali

White matter of the brain and spinal cord is susceptible to anoxia, ischemia, trauma and autoimmune attack. Irreversible injury to this tissue can have serious consequences for the overall function of the CNS through disruption of signal transmission. Like neurons, central myelinated axons are critically dependent on a continuous supply of oxygen and glucose. Injury causes failure of the Na-K-ATPase and accumulation of axoplasmic Na through non-inactivating Na channels, which, together with membrane depolarization, promotes reverse Na-Ca exchange and axonal Ca overload. An equally important source of deleterious Ca originates from intracellular stores, released in part by a mechanism similar to "excitation-contraction coupling" in muscle, involving activation of ryanodine receptors by L-type Ca channels. Excitotoxic mechanisms also play an important role: glutamate released by reversal of Na-dependent glutamate transporters activates AMPA/kainate receptors to cause injury to glia and myelin. Excessive accumulation of cytosolic Ca in turn activates various Ca-dependent enzymes such as calpains, phospholipases and others resulting in irreversible injury. Reoxygenation paradoxically accelerates injury in many axons, and promotes cytoskeletal degradation. Blockers of voltage-gated Na channels represent an attractive therapeutic target because of their ability to simultaneously interfere indirectly with several Ca sourcing pathways. Alternatively, or additionally, AMPA/kainate receptor inhibition has also been shown to be neuroprotective in several white matter injury paradigms. In the clinical setting, optimal protection of the CNS as a whole in common disorders such as stroke, traumatic brain and spinal cord injury, will likely require combination therapy aimed at unique steps in gray and white matter regions, or intervention at common points in the injury cascades.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge