Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

2 nonenal/arabidopsis thaliana

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
10 matokeo

Sensitivity of plant mitochondrial terminal oxidases to the lipid peroxidation product 4-hydroxy-2-nonenal (HNE).

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
We have investigated the effect of the lipid peroxidation product, HNE (4-hydroxy-2-nonenal), on plant mitochondrial electron transport. In mitochondria isolated from Arabidopsis thaliana cell cultures, HNE inhibited succinate-dependent oxygen consumption via the Aox (alternative oxidase), but had
Infection of leaves of Arabidopsis thaliana with conidial suspensions of the necrotrophic pathogen Botrytis cinerea resulted in a large decrease in the level of ascorbic acid and increases in intensity of a single-peak free radical and Fe(III) (g=4.27) signals in electron paramagnetic resonance

The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Oxidative injury of the root elongation zone is a primary event in aluminum (Al) toxicity in plants, but the injuring species remain unidentified. We verified the hypothesis that lipid peroxide-derived aldehydes, especially highly electrophilic alpha,beta-unsaturated aldehydes (2-alkenals),

Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1-AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions

Caterpillar- and salivary-specific modification of plant proteins.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Though there is overlap, plant responses to caterpillar herbivory show distinct variations from mechanical wounding. In particular, effectors in caterpillar oral secretions modify wound-associated plant responses. Previous studies have focused on transcriptional and protein abundance differences in
In plants, environmental stresses cause an increase in the intracellular level of reactive oxygen species (ROS), leading to tissue injury. To obtain biochemical insights into this damage process, we investigated the protein carbonyls formed by ROS or by the lipid peroxide-derived α,β-unsaturated

Reactive carbonyl species mediate methyl jasmonate-induced stomatal closure

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Production of reactive oxygen species (ROS) is a key signal event for methyl jasmonate (MeJA)- and abscisic acid (ABA)-induced stomatal closure. We recently showed that reactive carbonyl species (RCS) stimulates stomatal closure as an intermediate downstream of hydrogen peroxide (H2O2) production in
We have demonstrated that reactive carbonyl species (RCS) function as an intermediate downstream of hydrogen peroxide (H2O2) production in abscisic acid (ABA) signaling for stomatal closure in guard cells using transgenic tobacco plants overexpressing alkenal reductase. We investigated the
Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum)

Detoxification of Reactive Carbonyl Species by Glutathione Transferase Tau Isozymes.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Oxidative stimuli to living cells results in the formation of lipid peroxides, from which various aldehydes and ketones (oxylipin carbonyls) are inevitably produced. Among the oxylipin carbonyls, those with an α,β-unsaturated bond are designated as reactive carbonyl species (RCS) because they have
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge