Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

acrylic acid/infarction

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
10 matokeo
Background: Although many studies have been performed to elucidate the molecular mechanisms of heart failure, an effective pharmacological therapy to protect cardiac tissues from severe loss of contractile function associated with heart

Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Stem cell transplantation is currently implemented clinically but is limited by low retention and engraftment of transplanted cells and the adverse effects of inflammation and immunoreaction when allogeneic or xenogeneic cells are used. Here, we demonstrate the safety and efficacy of encapsulating

Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with

Upconverting nanophosphors as reporters in a highly sensitive heterogeneous immunoassay for cardiac troponin I.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Photon upconverting nanophosphors (UCNPs) have a unique capability to produce anti-Stokes emission at visible wavelengths via sequential multiphoton absorption upon infrared excitation. Since the anti-Stokes emission can be easily spectrally resolved from the Stokes' shifted autofluorescence, the
Engineered scaffold surface provides stem cells with vital cues that could determine the eventual fate of stem cells. In this work, biodegradable poly(L-lactide-co-ε-caprolactone) (PLCL) scaffold conjugated with Notch agonist-Jagged-1(JAG) peptide (2.1 kDa) was prepared to initiate myogenic
The synthesis and bioactivities of Danshensu derivatives (R)-methyl 2-acetoxy-3-(3,4-diacetoxyphenyl)propanoate (1a), (R)-methyl 2-acetoxy-3-(3,4-methylenedioxyphenyl)propanoate (1b) and their racemates 7 and 10 were reported in this paper. These derivatives were designed to improve their chemical

Rapid and Sensitive Detection of Cardiac Troponin I for Point-of-Care Tests Based on Red Fluorescent Microspheres.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
A reliable lateral flow immunoassay (LFIA) based on a facile one-step synthesis of single microspheres in combining with immunochromatography technique was developed to establish a new point-of-care test (POCT) for the rapid and early detection of cardiac troponin I (cTnI), a kind of cardiac
Scaffolds populated with human cardiac progenitor cells (CPCs) represent a therapeutic opportunity for heart regeneration after myocardial infarction. In this work, square-grid scaffolds are prepared by melt-extrusion additive manufacturing from a polyurethane (PU), further subjected to plasma
Injection of a bulking material into the ventricular wall has been proposed as a therapy to prevent progressive adverse remodeling due to high wall stresses that develop after myocardial infarction. Our objective was to design, synthesize and characterize a biodegradable, thermoresponsive hydrogel

An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Stem cell therapy has the potential to regenerate heart tissue damaged by myocardial infarction (MI), but it experiences extremely low efficacy. One of the major causes is the inferior cell survival under hypoxic condition of the infarcted hearts. We examined whether an oxygen-releasing system
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge