Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

borna disease/protease

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
11 matokeo

Binding properties of GP1 protein of Borna disease virus.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The surface glycoprotein (G) of Borna disease virus (BDV) plays central roles in the process of viral entry. BDV G is cleaved by cellular furin-like proteases into two components, GP1 and GP2. Although GP1 is involved in the virus entry into cells, the binding activity of GP1 to cells is unknown.
Persistent tolerant infection of rats with borna disease virus (BDV) results in a central nervous system (CNS) disease characterized by behavioral abnormalities. These disorders occur without inflammation and widespread cytolysis in the CNS. Therefore, mechanisms other than virally induced

Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Borna disease virus (BDV) is a non-segmented negative-stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated

Processing of the Borna disease virus glycoprotein gp94 by the subtilisin-like endoprotease furin.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Open reading frame IV (ORF-IV) of Borna disease virus (BDV) encodes a protein with a calculated molecular mass of ca. 57 kDa (p57), which increases after N glycosylation to 94 kDa (gp94). The unglycosylated and glycosylated proteins are proteolytically cleaved by the subtilisin-like protease furin.

Identification of the amino terminal subunit of the glycoprotein of Borna disease virus.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The only surface membrane glycoprotein of Borna disease virus (BDV) is synthesized as a polypeptide with a molecular mass of 57 kDa and N-glycosylated to a precursor glycoprotein (GP) of about 94 kDa. It is processed by the cellular protease furin into the C-terminal membrane-anchored subunit GP-C,
Borna disease virus (BDV) surface glycoprotein (GP) (p56) has a predicted molecular mass of 56 kDa. Due to extensive posttranslational glycosylation the protein migrates as a polypeptide of 84 kDa (gp84). The processing of gp84 by the cellular protease furin generates gp43, which corresponds to the
Borna disease virus (BDV) is an enveloped virus with a nonsegmented negative-strand RNA genome whose organization is characteristic of Mononegavirales. BDV cell entry follows a receptor-mediated endocytosis pathway, which is initiated by the recognition of an as-yet-unidentified receptor at the cell

Characterization of Borna disease virus p56 protein, a surface glycoprotein involved in virus entry.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Borna disease virus (BDV) is a nonsegmented negative-stranded (NNS) RNA virus, prototype of a new taxon in the Mononegavirales order. BDV causes neurologic disease manifested by behavioral abnormalities in several animal species, and evidence suggests that it may be a human pathogen. To improve our

Mechanism of Borna disease virus entry into cells.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
We have investigated the entry pathway of Borna disease virus (BDV). Virus entry was assessed by detecting early viral replication and transcription. Lysosomotropic agents (ammonium chloride, chloroquine, and amantadine), as well as energy depletion, prevented BDV infection, indicating that BDV

Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The biochemical purification and analysis of viral ribonucleoprotein complexes (RNPs) of negative-strand RNA viruses is hampered by the lack of suitable tags that facilitate specific enrichment of these complexes. We therefore tested whether fusion of the tandem-affinity-purification (TAP) tag to
BACKGROUND Borna disease virus (BDV) is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G) is an
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge