Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

flavoprotein/kuoza kwa meno

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
Ukurasa 1 kutoka 45 matokeo

Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
This work describes for the first time the identification of a reaction intermediate, C4a-hydroperoxyflavin, during the oxidative half-reaction of a flavoprotein oxidase, pyranose 2-oxidase (P2O) from Trametes multicolor, by using rapid kinetics. The reduced P2O reacted with oxygen with a forward
The trifunctional flavoprotein proline utilization A (PutA) links metabolism and gene regulation in Gram-negative bacteria by catalyzing the two-step oxidation of proline to glutamate and repressing transcription of the proline utilization regulon. Small-angle x-ray scattering (SAXS) and domain
In wild-type trimethylamine dehydrogenase, tyrosine-442 is located at the center of a concave region on the surface of the enzyme that is proposed to form the docking site for the physiological redox acceptor, electron transferring flavoprotein. The intrinsic rate constant for electron transfer in

Magnetically Sensitive Radical Photochemistry of Non-natural Flavoproteins.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
It is a remarkable fact that ∼50 μT magnetic fields can alter the rates and yields of certain free-radical reactions and that such effects might be the basis of the light-dependent ability of migratory birds to sense the direction of the Earth's magnetic field. The most likely sensory molecule at

Structure of the monooxygenase component of a two-component flavoprotein monooxygenase.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
p-Hydroxyphenylacetate hydroxylase from Acinetobacter baumannii is a two-component system consisting of a NADH-dependent FMN reductase and a monooxygenase (C2) that uses reduced FMN as substrate. The crystal structures of C2 in the ligand-free and substrate-bound forms reveal a preorganized pocket

Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a
LadA, a long-chain alkane monooxygenase, utilizes a terminal oxidation pathway for the conversion of long-chain alkanes (up to at least C(36)) to corresponding primary alcohols in thermophilic bacillus Geobacillus thermodenitrificans NG80-2. Here, we report the first structure of the long-chain
The model of a mechanism producing the excitation of two electrons by the rotation of an orbital is presented functioning at the level of the flavoenzyme molecule. According to this model, during the transfer of two electrons from an NADH coenzyme to a flavoenzyme molecule, in a reaction cavity of

Choline oxidases

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Choline oxidase catalyzes the four-electron, two-step, flavin-mediated oxidation of choline to glycine betaine. The enzyme is important both for medical and biotechnological reasons, because glycine betaine is one among a limited number of compatible solutes used by cells to counteract osmotic

Structure and mechanism of monoamine oxidase.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Monoamine oxidases A and B (MAO A and MAO B) are mitochondrial outer membrane-bound flavoproteins that catalyze the oxidative deamination of neurotransmitters and biogenic amines. A number of mechanism-based inhibitors (MAOI's) have been developed for clinical use as antidepressants and as

Fluorescence spectroscopy and imaging of myocardial apoptosis.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Fluorometry is used to detect intrinsic flavoprotein (FP) and nicotinamide adenine dinucleotide (NADH) signals in an open-chest rabbit model of myocardial ischemia-reperfusion injury. Myocyte apoptosis has been shown clinically to contribute to infarct size following reperfusion of ischemic

Evidence of powerful substrate electric fields in DNA photolyase: implications for thymidine dimer repair.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
DNA photolyase is a flavoprotein that repairs cyclobutylpyrimidine dimers by ultrafast photoinduced electron transfer. One unusual feature of this enzyme is the configuration of the FAD cofactor, where the isoalloxazine and adenine rings are nearly in vdW contact. We have measured the steady-state

Cyclobutylpyrimidine dimer base flipping by DNA photolyase.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
DNA Photolyase is a flavoprotein that uses light to repair cyclobutylpyrimidine dimers in DNA. From considerations of the crystal structure of the protein, it has been hypothesized that the dimer lesion is flipped out of the DNA double helix into the substrate binding pocket. We have used a
Trypanosoma and Leishmania, pathogens responsible for diseases such as African sleeping sickness, Chagas' heart disease, or Oriental sore, are two of the very few genera that do not use the ubiquitous glutathione/glutathione reductase system to keep a stable cellular redox balance. Instead, they

Structure and mutation analysis of archaeal geranylgeranyl reductase.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The crystal structure of geranylgeranyl reductase (GGR) from Sulfolobus acidocaldarius was determined in order to elucidate the molecular mechanism of the catalytic reaction. The enzyme is a flavoprotein and is involved in saturation of the double bonds on the isoprenoid moiety of archaeal
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge