Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pterocarpan/soya

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
14 matokeo

LDL-antioxidant pterocarpans from roots of Glycine max (L.) Merr.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The methanolic root extract of Glycine max (L.) Merr. was chromatographed, which yielded 10 flavonoids, including three isoflavones 1-3, five pterocarpans 4-8, one flavonol 9, and one anthocyanidin 10. All isolated compounds were examined for LDL-antioxidant activities using four different assay
In Korea, soy (Glycine max (L.) Merr.) leaves are eaten as a seasonal vegetable or pickled in soy sauce. Ethyl acetate extracts of soy leaves (EASL) are enriched in pterocarpans and have potent α-glucosidase inhibitory activity. This study investigated the molecular mechanisms underlying the
Two saprophytic fungi (Mucor ramosissimus and Rhizopus sp.) were tested for their ability to induce phytoalexin production by seeds of frog-eye leaf spot and stem canker-resistant and -susceptible soybean (Glycine max L.) cultivars. Only M. ramosissimus was shown to elicit a response and qualitative
Soybean (Glycine max) accumulates several prenylated isoflavonoid phytoalexins, collectively referred to as glyceollins. Glyceollins (I, II, III, IV and V) possess modified pterocarpan skeletons with C5 moieties from dimethylallyl diphosphate, and they are commonly produced from (6aS,
Glyceollins are soybean (Glycine max) phytoalexins possessing pterocarpanoid skeletons with cyclic ether decoration originating from a C5 prenyl moiety. Enzymes involved in glyceollin biosynthesis have been thoroughly characterized during the early era of modern plant biochemistry, and many genes

Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
BACKGROUND Reports of plant molecular responses to pathogenic infections have pinpointed increases in activity of several genes of the phenylpropanoid pathway leading to the synthesis of lignin and flavonoids. The majority of those findings were derived from single gene studies and more recently
The isoflavonoid profile of soybean was altered in different ways by stimulation of defense response upon germination. The combination of simultaneous germination and induction by Rhizopus oryzae increased the total isoflavonoid content of soybeans over 2-fold. Pterocarpans became the predominant
Phytophthora megasperma Drechs. f. sp. glycinea Kuan & Erwin (PMG) cell wall glucan has been extensively characterized as an elicitor of the pterocarpan phytoalexins, the glyceollins in soybean (Glycine max L.). Just recently, this glucan was shown to be a potent elicitor of conjugates of the
Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange
Primary roots of soybean [Glycine max (L.), cv Harosoy 63] seedlings were inoculated with zoospores from either race 1 (incompatible, host resistant) or race 3 (compatible, host susceptible) of Phytophthora megasperma f. sp. glycinea (Pmg) and the activities of phenylalanine ammonia-lyase (PAL),
Mature soybean (Glycine max L. cv Harosoy 63) leaves normally contain kaempferol-3-glycosides but they accumulate no other flavonoids. Whole leaves sprayed with the diphenyl ether herbicide Acifluorfen and maintained in the light developed small necrotic lesions and accumulated isoflavone aglycones,

Development of a radioimmunoassay for the soybean phytoalexin glyceollin I.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
A radioimmunoassay for glyceollin I, the major phytoalexin produced by soybean (Glycine max [L.] Merr.), has been developed. Antibodies were raised in rabbits against a glyceollin I-bovine serum albumin conjugate. The antisera were used to establish a radioimmunoassay for glyceollin I using

Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields.
Phytoalexin biosynthesis is part of the defense mechanism of soybean (Glycine max) plants against attack by the fungus Diaporthe phaseolorum f. sp. meridionalis (Dpm), the causal agent of stem canker disease. The treatment of soybean cotyledons with Dpm elicitor or with sodium nitroprusside (SNP), a
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge