Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

sphingosine/kuoza kwa meno

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
Ukurasa 1 kutoka 37 matokeo

Discovery of a Small Side Cavity in Sphingosine Kinase 2 that Enhances Inhibitor Potency and Selectivity.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The sphingosine-1-phosphate (S1P) signaling pathway is an attractive drug target due to its involvement in immune cell chemotaxis and vascular integrity. The formation of S1P is catalyzed by sphingosine kinase 1 or 2 (SphK1 or SphK2) from sphingosine (Sph) and ATP. Inhibition of SphK1 and 2 to
Geniposide (GE) is an iridoid glycoside compound with anti-inflammatory effect. The potential of sphingosine 1-phosphate (S1P) as a plasma marker in human diseases was suggested recently in the literature, which demonstrated that, in patients with inflammatory diseases, plasma S1P was elevated. It

Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Phosphatidic acid (PA) is an important lipid signaling molecule which interacts with Arabidopsis thaliana Sphingosine kinase1 (AtSPHK1) during several abiotic stresses particularly drought stress as a result of Abscisic acid (ABA) signaling in guard cells. PA molecules respond by generating lipid

Inhibition of the sphingosine-1-phosphate pathway promotes the resolution of neutrophilic inflammation.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Sphingosine-1-phosphate (S1P) is an important sphingolipid derived from plasma membrane and has a known role in productive phase of inflammation, but its role in neutrophil survival and resolution phase of inflammation is unknown. Here, we investigated the effects of inhibition of S1P receptors and

Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Bone is a dynamic organ that is continuously turned over during growth, even in adults. During bone remodeling, homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. However, in pathological conditions such as osteoporosis, osteopetrosis,
We describe a method to visualize the migration of osteoclast precursors within intact murine bone -marrow in real time using intravital multiphoton microscopy. Conventionally, cell migration has been evaluated using in vitro systems, such as transmigration assays. Although these methods are
The aim of our study was to investigate the roles played by sphingosine kinase (SPHK) in the anaphylatoxin C5a-triggered responses in vivo. Our data show that i.v. administration of C5a triggers a rapid neutropenic response, but pretreating mice with the SPHK inhibitor, N,N-dimethylsphingosine

The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
BACKGROUND Although recent studies provide clinical evidence that sphingosine-1-phosphate (S1P) may primarily affect bone resorption in humans, rather than bone formation or the osteoclast-osteoblast coupling phenomenon, those studies could not determine which bone resorption mechanism is more

Bacterial versus human sphingosine-1-phosphate lyase (S1PL) in the design of potential S1PL inhibitors.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
A series of potential active-site sphingosine-1-phosphate lyase (S1PL) inhibitors have been designed from scaffolds 1 and 2, arising from virtual screening using the X-ray structures of the bacterial (StS1PL) and the human (hS1PL) enzymes. Both enzymes are very similar at the active site, as
The pleiotropic signaling lipid sphingosine-1-phosphate (S1P) plays significant roles in angiogenesis, heart disease, and cancer. LT1009 (also known as sonepcizumab) is a humanized monoclonal antibody that binds S1P with high affinity and specificity. Because the antibody is currently in clinical
Sphingosine-1-phosphate (S1P), a biologically active lysophospholipid that is enriched in blood, controls the trafficking of osteoclast precursors between the circulation and bone marrow cavities via G protein-coupled receptors, S1PRs. While S1PR1 mediates chemoattraction toward S1P in bone marrow,
Alterations in cellular signaling pathways are associated with multiple disease states including cancers and fibrosis. Current research efforts to attenuate cancers, specifically lymphatic cancer, focus on inhibition of two sphingosine kinase isoforms, sphingosine kinase 1 (SphK1) and sphingosine
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive lysosphingolipid and a constituent of high-density lipoprotein (HDL) exerting several atheroprotective effects in vitro. However, the few studies addressing anti-atherogenic effects of S1P in vivo have led to disparate results. We here examined
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator carried by the HDL-associated apoM protein in blood, regulating many physiological processes by activating the G protein-coupled S1P receptor in mammals. Despite the solved crystal structure of the apoM-S1P complex, the mechanism of S1P

Host sphingosine kinase 1 worsens pancreatic cancer peritoneal carcinomatosis.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
There are no effective treatments for pancreatic cancer peritoneal carcinomatosis (PC) or cancer dissemination in abdominal cavity. Sphingosine-1-phosphate (S1P), a bioactive lipid mediator produced by sphingosine kinases (SphK1 and SphK2), plays critical roles in cancer progression. We reported
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge