Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain Research 2011-Feb

Differential molecular regulation of glutamate in kindling resistant rats.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Taku Doi
Yuto Ueda
Mayuko Takaki
L James Willmore

Anahtar kelimeler

Öz

Using pentylenetetrazol (PTZ) kindling, we collected hippocampal tissue from standard response and kindling resistant animals, measuring hippocampal mRNA with real-time PCR of glutamate transporters GLAST, GLT-1, and EAAC1 and the sodium-coupled neutral amino acid transporter (SNAT) 1, SNAT2, and SNAT3. In addition, we measured mRNA of glutamine synthetase (GS), phosphate-activated glutaminase (PAG), glutamic acid decarboxylase (GAD) 1, GAD2, and vesicular inhibitory amino acid transporter (VIAAT). Fully kindled animals had decreased expression of mRNA in the hippocampus for GLAST and GAD2 compared with saline injected control. mRNA for SNAT1, SNAT2, SNAT3, GS, and VIAAT was increased. After induction of generalized tonic-clonic seizures by PTZ there were no differences in mRNA at 24h after seizures, equaling baseline quantities except for GAD1, which was decreased. When levels were measured at 30days after a PTZ induced convulsive seizure, we found increased levels of GLT-1, SNAT1 and GS, but decreased levels of GAD1. When these animals, serving as control for the 30day interval between the last convulsive seizure in the kindled experimental group, were analyzed, we found that GLT-1, SNAT3, GAD1 and VIAAT differed in that GLT-1 was decreased and the others increased. Animals found resistant to kindling had strikingly different mRNA patterns, with markedly up-regulated mRNA of proteins that transport glutamate into neurons and glia; SNAT1 was up regulated as well. Up-regulation of genes in kindling resistant animals supports the hypothesis that clearance of glutamate, conversion to glutamine and transport of glutamine into neurons, has the effect of raising the threshold for convulsive seizures and attenuating kindling.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge