Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Chemistry 2018

Identification and Quantification of Volatile Ramson-Derived Metabolites in Humans.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Laura Scheffler
Constanze Sharapa
Tayyaba Amar
Andrea Buettner

Anahtar kelimeler

Öz

Ramson (Allium ursinum) is known for its typical garlic-like aroma. Both ramson and garlic belong to the genus allium which is characterized by a high content of sulfurous compounds. However, in contrast to garlic, ramson is in general not associated with an unpleasant breath following consumption. While there is data available regarding the metabolism of volatile garlic constituents in the human body, the metabolism of ramson was not yet addressed. To elucidate if ramson has an impact on the body odor, this study aimed at identifying volatile ramson-derived metabolites in human milk and urine. Therefore, milk and urine samples were gathered before and after ramson consumption, and were analyzed sensorially by a trained human sensory panel as well as chemo-analytically applying gas chromatography-mass spectrometry/olfactometry (GC-MS/O). Sensory evaluation revealed a garlic-/cabbage like odor in milk samples obtained after ramson consumption, demonstrating that ramson consumption affected the milk aroma. Analyzes by means of GC-MS/O further confirmed excretion of three ramson-derived metabolites in milk and urine samples collected after ramson consumption, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2). Of these metabolites only AMS had a garlic-/cabbage-like odor, while the other two were odorless. These metabolites were subsequently quantified using stable isotope dilution assays. Nine urine sets, each comprising eight urine samples, and nine milk sets, each comprising four samples, were analyzed. In case of the urine sets a time interval of about 24 h was monitored, in case of the milk sets a time interval of up to 9 h. Despite the fact that all samples contained the same metabolites there were relevant differences found between individual subjects, especially with regard to the temporal rate of metabolite excretion. Generally, the maxima of metabolite excretion were observed in milk sets within 3 h after ramson consumption. In urine the highest AMS and AMSO amounts were observed within 2 h whereas the maximum concentration of AMSO2 was reached about 2 to 4 h after ramson ingestion. This study suggests that ramson constituents are heavily metabolized in the human body.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge