Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
GLIA 1995-Oct

Na+ channel aggregation in remyelinating mouse sciatic axons following transection.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
E E Tzoumaka
S D Novaković
S R Levinson
P Shrager

Anahtar kelimeler

Öz

Mouse sciatic nerves from the degeneration-resistant strain C57BL/6/Wld (Ola) were surgically injected with lysolecithin to induce focal demyelination. Three days later they were transected adjacent to the spinal cord to eliminate contact of the axons with their cell bodies. The Na+ channel distribution was assessed by immunocytochemistry and followed at several stages of remyelination. Control experiments were performed on nerves that were injected but not cut. At (3 + 4) days, namely, nerves cut 3 days post-injection and examined 4 days after cutting, axons contained fully demyelinated regions. Na+ channel clusters appeared only at heminodes and at isolated sites that are likely to represent original nodes of Ranvier. During the next few days proliferating Schwann cells adhered to the axons and extended their processes. Clusters of Na+ channels appeared at their edges, and as the Schwann cells elongated the distance between these aggregates increased. A few clusters associated with neighboring Schwann cells approached each other and appeared to coalesce at sites where presumably new nodes of Ranvier would be formed. Beyond (3 + 6) days excessive degeneration of the transected axons precluded further observations. In the uncut controls, the spatio-temporal sequence of Schwann cell proliferation and channel patch formation and movement was similar to that described above, although myelin formation was somewhat faster than in the cut axons. It is concluded that Na+ channel aggregation associated with the early stages of remyelination is not dependent upon continuous communication of the axon with its cell body and is under local control.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge