Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2006-Jun

Occurrence of Arabis mosaic virus in Hostas in the United States.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
B Lockhart

Anahtar kelimeler

Öz

Hostas (Hosta spp.) are one of the most widely grown and economically important landscape perennials in the nursery industry in North America. Several viruses including Hosta virus X (HVX), Tobacco rattle virus (TRV), Tobacco ringspot virus (ToRSV), Tomato ringspot virus (TomRSV), Impatiens necrotic spot virus (INSV), and Tomato spotted wilt virus (TSWV) are known to occur in hostas (4). This report confirms the occurrence of an additional virus, Arabis mosaic virus (ArMV), in hostas in North America. This virus was first identified during the summer of 2004 in Hosta fortunei 'Sharmon' in several garden centers in Minneapolis and St. Paul, MN. Entire lots of this variety, numbering several dozen plants, showed symptoms consisting of blanching of the foliage similar to those caused by ToRSV and TomRSV infection (4). Symptoms persisted throughout the growing season. Virus-like particles, 28 to 30 nm in diameter, were observed by electron microscopy in partially purified extracts of symptomatic leaf tissue following fixation with 5% glutaraldehyde and negative staining with 2% sodium phosphotungstate, pH 7.0. Particles had an angular outline and some were penetrated by stain. No other virus-like particles were observed in these extracts. The particles were identified as those of ArMV. Identification was made using double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and immunosorbent electron microscopy (ISEM) with antiserum to ArMV (PVAS-587) obtained from the American Type Culture Collection, Manassas, VA. In the spring and summer of 2005, ArMV was again identified as described above in 'Sharmon', H. undulata 'Albomarginata' samples from Minnesota, Michigan, and Nebraska, and H. 'Marion Bachman' and H. 'Touch of Class' from two wholesale nurseries in Minnesota. Symptoms in these hosta cultivars were similar to those observed in 'Sharmon' and were accompanied by stunting and leaf deformation. A portion of the coat protein (CP) gene of the ArMV isolate from 'Sharmon', designated ArMV-H, was amplified using reverse transcription-polymerase chain reaction (RT-PCR) with ArMV-specific CP primers (3) and total RNA extracted with a RNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA). Amplicons of the expected size (220 bp) were cloned and five clones were sequenced. Nucleotide sequence identities of the ArMV-H CP sequence to corresponding ArMV databank entries varied from 94 to 88% (Genbank Accession Nos. AY017339 and D10086 and X55460 and X81815, respectively). Interestingly, the hosta ArMV isolate was not transmitted by mechanical inoculation to diagnostically susceptible indicator plants (cucumber, tobacco, and petunia) (2) or to hosta (H. undulata 'Albormarginata', H. 'Honeybells', and H. 'Royal Standard'). Testing by using ELISA and ISEM showed that 'Sharmon' source plants contained high levels of ArMV antigen and virions, and a high percentage of virions were not penetrated by negative stain, indicating that they were not empty (i.e., devoid of RNA). It appears that ArMV-H may be transmitted only vertically, (i.e., clonal propagation) and this raises some interesting questions about the molecular basis of this anomaly. An isolate of ArMV from hops was similarly reported to have a very restricted host range (1) suggesting a possibility of a common mechanism of host range restriction. References: (1) K. R. Bock. Ann. Appl. Biol. 57:431, 1966. (2) A. A. Brunt et al. Viruses of Plants. CAB Internacional Mycological Institute, Wallingford, UK, 1995. (3) P. Kominek et al. Acta Virol. 47:199, 2003. (4) B. E. L. Lockhart and S. Currier. Acta Hortic. 432:62, 1996.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge