Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnology for Biofuels 2015

Ozone detoxification of steam-pretreated Norway spruce.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Adnan Cavka
Anna Wallenius
Björn Alriksson
Nils-Olof Nilvebrant
Leif J Jönsson

Anahtar kelimeler

Öz

BACKGROUND

Pretreatment of lignocellulose for biochemical conversion commonly results in formation of by-products that inhibit microorganisms and cellulolytic enzymes. To make bioconversion processes more efficient, inhibition problems can be alleviated through conditioning. Ozone is currently commercially employed in pulp and paper production for bleaching, as it offers the desirable capability to disrupt unsaturated bonds in lignin through an ionic reaction known as ozonolysis. Ozonolysis is more selective towards lignin than cellulose, for instance, when compared to other oxidative treatment methods, such as Fenton's reagent. Ozone may thus have desirable properties for conditioning of pretreated lignocellulose without concomitant degradation of cellulose or sugars. Ozone treatment of SO2-impregnated steam-pretreated Norway spruce was explored as a potential approach to decrease inhibition of yeast and cellulolytic enzymes. This novel approach was furthermore compared to some of the most effective methods for conditioning of pretreated lignocellulose, i.e., treatment with alkali and sodium dithionite.

RESULTS

Low dosages of ozone decreased the total contents of phenolics to about half of the initial value and improved the fermentability. Increasing ozone dosages led to almost proportional increase in the contents of total acids, including formic acid, which ultimately led to poor fermentability at higher ozone dosages. The decrease of the contents of furfural and 5-hydroxymethylfurfural was inversely proportional (R (2) > 0.99) to the duration of the ozone treatment, but exhibited no connection with the fermentability. Ozone detoxification was compared with other detoxification methods and was superior to treatment with Fenton's reagent, which exhibited no positive effect on fermentability. However, ozone detoxification was less efficient than treatment with alkali or sodium dithionite. High ozone dosages decreased the inhibition of cellulolytic enzymes as the glucose yield was improved with 13 % compared to that of an untreated control.

CONCLUSIONS

Low dosages of ozone were beneficial for the fermentation of steam-pretreated Norway spruce, while high dosages decreased the inhibition of cellulolytic enzymes by soluble components in the pretreatment liquid. While clearly of interest for conditioning of lignocellulosic hydrolysates, future challenges include finding conditions that provide beneficial effects both with regard to enzymatic saccharification and microbial fermentation.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge