Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2019-Mar

Primary targets of the sesquiterpene lactone deoxymikanolide on Trypanosoma cruzi.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Vanesa Puente
Laura Laurella
Renata Spina
Esteban Lozano
Virginia Martino
Miguel Sosa
Valeria Sülsen
Elisa Lombardo

Anahtar kelimeler

Öz

Deoxymikanolide is a sesquiterpene lactone isolated from Mikania micrantha and M. variifolia which, has previously demonstrated in vitro activity on Trypanosoma cruzi and in vivo activity on an infected mouse model.Based on these promising findings, the aim of this study was to investigate the mechanism of action of this compound on different parasite targets.The interaction of deoxymikanolide with hemin was examined under reducing and non- reducing conditions by measuring modifications in the Soret absorption band of hemin; the thiol interaction was determined spectrophotometrically through its reaction with 5,5'-dithiobis-2-nitrobenzoate in the presence of glutathione; activity on the parasite antioxidant system was evaluated by measuring the activity of the superoxide dismutase and trypanothione reductase enzymes, together with the intracellular oxidative state by flow cytometry. Superoxide dismutase and trypanothione reductase activities were spectrophotometrically tested. Cell viability, phosphatidylserine exposure and mitochondrial membrane potential were assessed by means of propidium iodide, annexin-V and rhodamine 123 staining, respectively; sterols were qualitatively and quantitatively tested by TLC; ultrastructural changes were analyzed by transmission electron microscopy. Autophagic cells were detected by staining with monodansylcadaverine.Deoxymikanolide decreased the number of reduced thiol groups within the parasites, which led to their subsequent vulnerability to oxidative stress. Treatment of the parasites with the compound produced a depolarization of the mitochondrial membrane even though the plasma membrane permeabilization was not affected. Deoxymikanolide did not affect the intracellular redox state and so the mitochondrial dysfunction produced by this compound could not be attributed to ROS generation. The antioxidant defense system was affected by deoxymikanolide at twenty four hours of treatment, when both an increased oxidative stress and decreased activity of superoxide dismutase and trypanothione reductase (40 and 60% respectively) were observed. Both the oxidative stress and mitochondrial dysfunction induce parasite death by apoptosis and autophagy.Based on our results, deoxymikanolide would exert its anti-T cruzi activity as a strong thiol blocking agent and by producing mitochondrial dysfunction.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge