Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Toxicology 2014-Jun

Significance of the imidazoline receptors in toxicology.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
J A Lowry
J T Brown

Anahtar kelimeler

Öz

BACKGROUND

The alpha-2 adrenergic (AA-2) receptor agonists and imidazolines are common exposures in the American Association of Poison Control Centers (AAPCC) National Poison Data System (NPDS). Although the interaction between the AA-2 receptor and imidazoline receptors has been extensively studied, it largely remains unknown to health-care professionals. This review describes these interactions and mechanisms by which agonists affect physiologic responses binding to these receptors.

METHODS

Papers published in English from 1960 to 2013 were retrieved from PubMed. A total of 323 original articles were identified and 173 were included. Background. The toxicity associated with clonidine (e.g., bradycardia, miosis, and hypotension) is largely assumed to be secondary to the functional overlap of the AA-2 receptors and the mu receptors. However, the effects at the AA-2 receptor could not fully account for these symptoms. Subsequently, clonidine was found to produce its pharmacologic effect in the central nervous system (CNS) by interaction not only with the AA-2 receptor but also on selective imidazoline receptors. IMIDAZOLINE RECEPTORS: Since their discovery, three distinct classes of imidazoline receptors, also known as imidazoline binding sites or imidazoline/guanidinium receptive sites, have been characterized. Imidazoline-1 (I-1) receptors are involved in the hypotensive activity of clonidine and related compounds supporting the idea that the I-1 receptors are upstream from the AA-2 receptor and work in tandem for its effect on blood pressure. Additionally, stimulation of N-type Calcium-2 channels, G-protein inwardly rectifying potassium channel, adenosine receptors, phosphatidyl-choline-specific phospholipase C, and nicotinic receptors have been implicated to be involved. Previous studies have shown that I-1 receptors may also be involved in other physiologic responses beyond cardiac function. Imidazoline-2 (I-2) receptors interact with monoamine oxidase A and monoamine oxidase B leading to research that has focused on the effect of I-2 receptors and depression and the suggestion of a possible antidepressant action of the imidazolines. I-2 receptor ligands may have substantial antinociceptive activity and work synergistically with opioids in acute pain. Imidazoline-3 (I-3) receptors are located on the pancreatic β-cells and modulate glucose homeostasis. IMIDAZOLINE LIGANDS: Four endogenous compounds have been found to bind and include clonidine-displacing substance, agmatine, harmane, and imidazole acetic acid. Significant interest in developing new agents with higher selectivity and affinity for I-1 receptors has resulted. Toxicology. Alpha-2 adrenoceptor and imidazoline receptor agonists such as clonidine and tetrahydrozoline are common ingestions reported to poison control centers. The most common toxic effects of clonidine are similar to those of the over-the-counter imidazolines and include CNS depression, bradycardia, hypotension, respiratory depression, miosis, hypothermia, and hypertension (early and transient). Based on their structure and subsequent studies, imidazoline receptors seem to be the primary binding site for these chemicals. Case reports typically illustrate rapid onset of action with serious side effects following ingestion of relatively small amounts. These agents have been reportedly used in drug-assisted sexual assaults.

CONCLUSIONS

Much of the toxicity associated with drugs such as clonidine, guanfacine, and tetrahydrozoline are due to their binding to imidazoline receptors. Knowledge of the imidazoline receptors may lead to new therapeutic agents and inform management of patients with imidazoline overdose.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge