Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1990-Feb

Structure-activity relations of the cardiac gap junction channel.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
D C Spray
J M Burt

Anahtar kelimeler

Öz

Cardiac gap junction channels play the important roles of synchronizing pacemaker cells and allowing impulse propagation along the conduction system and throughout the ventricular myocardium. These channels, which support current flow in both longitudinal and tranverse directions, are permeable to anions and cations with radii less than approximately 0.5 nm and in rat heart have unitary conductances on the order of 50 pS. This unitary conductance is consistent with channel geometry described by a right cylindrical pore with diameter large enough for the brilliantly fluorescent dye molecule lucifer yellow to pass between cells. These channels, like others in biological systems, are opened and closed by various treatments, a process termed gating. Cytoplasmic acidification reduces junctional conductance (gj), an effect that is apparently potentiated by elevated myoplasmic Ca ions. Reduced gj also occurs in response to a variety of lipophilic molecules, including halothane, heptanol, and unsaturated fatty acids; the mechanism of action may involve disruption of the protein-lipid microenvironment of the gap junction channel. Arachidonic acid uncouples, and this effect is partially, but incompletely, blocked by an inhibitor of the lipoxygenase metabolic pathways. Cyclooxygenase inhibitors have no protective effects. Certain cyclic nucleotides can rapidly increase gj [adenosine 3',5'-cyclic monophosphate (cAMP)] or slightly decrease it [guanosine 3',5'-cyclic monophosphate (cGMP)], and agents that use these cyclic nucleotides as second messengers (isoproterenol and perhaps carbachol, respectively) produce consistent effects. Agents expected to cause protein kinase C activation (tumor-promoting phorbol esters and diacylglycerol) increase gj rapidly. The gap junction protein from rat heart has been cloned and sequenced. From the primary sequence for the protein, plausible sites of action within the putative cytoplasmic domains are proposed for each of these treatments. In response to gating stimuli that close the channel (halothane, CO2, heptanol), unitary channel conductance is unchanged, suggesting that these agents act by reducing open time probability. Together, these properties constitute the beginnings of our endeavor to define pharmacological agents that are potentially useful in therapeutic manipulation of synchronous discharge, conduction velocity, and isochronous wavefront propagation in cardiac tissue.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge