Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2019-Dec

Silver nanoparticle toxicity effect on the seagrass Halophila stipulacea.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Zoi Mylona
Emmanuel Panteris
Theodoros Kevrekidis
Paraskevi Malea

Anahtar kelimeler

Öz

Information on silver nanoparticle (AgNP) phytotoxicity on seagrasses is provided for the first time. Toxic effects of environmentally relevant AgNP concentrations on Halophila stipulacea were assessed to identify sensitive biomarkers, to determine threshold effect concentrations and to evaluate potential risks. Potential alterations in the cytoskeleton, endoplasmic reticulum, cell ultrastructure and viability, oxidative stress parameters and elongation in H. stipulacea leaves exposed to AgNP concentrations ranging from 0.0002 to 0.2 mg L-1 for 8 days were examined. The first signs of actin filament (AF) response in differentiating cells, exhibiting disorientation and slight bundling, were observed on the 4th day at 0.0002 mg L-1, while at the end of the experiment and at the higher concentrations, AFs were extremely bundled. Endoplasmic reticulum was affected in meristematic and differentiating cells; massive aggregations and loss of the "grainy" structure were observed, initially on the 6th day at 0.002 mg L-1. Effects on microtubules were detected on the last day at 0.2 mg L-1. An increase in H2O2 levels on the 4th and/or 6th day even at 0.0002 mg L-1 was followed by a decrease on, or up to the last day. On the 6th day at the lowest concentration, elevated malondialdehyde content, and superoxide dismutase and peroxidase activity were detected, indicating oxidative damage and antioxidant defense mechanism activation. Dead epidermal cells mainly occurred at 0.02 and 0.2 mg L-1, while no dead vein cells were detected. A significant inhibition in leaf elongation was observed only at 0.2 mg L-1. Therefore, AF disturbance in differentiating leaf cells, being a susceptible response parameter, could be regarded as an early warning indicator of risk posed by AgNPs to H. stipulacea meadows, while most of the remaining parameters examined also constitute useful biomarkers. The lowest observed effect concentration (0.0002 mg L-1), being within the range of environmentally relevant AgNPs concentrations, suggests the possibility of negative impacts of AgNPs on seagrass health. A risk quotient of 1.33 was calculated, indicating that AgNPs may pose a significant potential risk to the coastal environment. The data presented highlight the importance of future research to further investigate the seagrass-AgNP interactions, stress the need for a refinement of the environmental risk assessment of AgNPs and could be utilized for the design of biomonitoring programs for rational management of the coastal environment.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge