Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

diindolylmethane/meme kanseri

Bağlantı panoya kaydedilir
Sayfa 1 itibaren 86 Sonuçlar

3, 3'-Diindolylmethane enhances the effectiveness of herceptin against HER-2/neu-expressing breast cancer cells.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Herceptin failure is a major clinical problem in breast cancer. A subset of breast cancer patients with high HER-2/neu levels eventually experience metastatic disease progression when treated with Herceptin as a single agent. Mechanistic details of development of this aggressive disease are not
As a phytoestrogen, 3,3'-diindolylmethane (DIM) plays a chemopreventive role by inhibiting cancer progression. In this study, we examined the effects of 17β-estradiol (E2), two endocrine disrupting chemicals (EDCs), triclosan (TCS) and bisphenol A (BPA), and DIM on epithelial-mesenchymal transition

3,3'-diindolylmethane rapidly and selectively inhibits hepatocyte growth factor/c-Met signaling in breast cancer cells.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
3,3'-Diindolylmethane (DIM), an indole derivative from vegetables of the Brassica genus, has antiproliferative activity in breast cancer cells. Part of this activity is thought to be due to DIM inhibition of Akt signaling, but an upstream mechanism of DIM-induced Akt inhibition has not been

3,3'-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
BACKGROUND A major problem in the treatment of cancer is the development of toxic side effects and resistance to chemotherapy. The use of plant compounds to overcome resistance and prevent toxicity is a potential strategy for treatment. OBJECTIVE We evaluated whether 3,3'-diindolylmethane (DIM)
The above article, published online on August 19, 2009 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State
The phytochemical indole-3-carbinol (I3C), found in cruciferous vegetables, and its major acid-catalyzed reaction product 3,3'-diindolylmethane (DIM) showed anticancer activity mediated by its pleiotropic effects on cell cycle progression, apoptosis, carcinogen bioactivation, and DNA repair. To

Interplay of genes regulated by estrogen and diindolylmethane in breast cancer cell lines.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Diindolylmethane (DIM), a biologically active congener of indole-3-carbinol (I3C) derived from cruciferous vegetables, is a promising agent for the prevention of estrogen-sensitive cancers. Both DIM and estrogen affect transcription of genes by binding receptors, such as aryl hydrocarbon receptor
3,3'-Diindolylmethane (DIM) is a known anti-tumor agent against breast and other cancers; however, its exact mechanism of action remains unclear. The urokinase plasminogen activator (uPA) and its receptor (uPAR) system are involved in the degradation of basement membrane and extracellular matrix,

3,3'-Diindolylmethane enhances taxotere-induced growth inhibition of breast cancer cells through downregulation of FoxM1.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Emerging evidence suggests that the transcription factor Forkhead Box M1 (FoxM1) is associated with aggressive human carcinomas, including breast cancer. Because elevated expression of FoxM1 has been observed in human breast cancers, FoxM1 has attracted much attention in recent years as a potential
BACKGROUND 3,3'-diindolylmethane (DIM) is an acid-catalyzed dimer of idole-3-carbinol (I3C), a phytochemical found in cruciferous vegetables that include broccoli, Brussels sprouts and cabbage. DIM is an aryl hydrocarbon receptor (AhR) ligand and a potential anticancer agent, namely for the

Ligand-independent activation of estrogen receptor function by 3, 3'-diindolylmethane in human breast cancer cells.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
3,3'-Diindolylmethane (DIM), a major in vivo product of acid-catalyzed oligomerization of indole-3-carbinol (I3C), is a promising anticancer agent present in vegetables of the Brassica genus. We investigated the effects of DIM on estrogen-regulated events in human breast cancer cells and found that

Bcl-2 family-mediated apoptotic effects of 3,3'-diindolylmethane (DIM) in human breast cancer cells.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
3,3'-Diindolylmethane (DIM) is a major in vivo derivative of the putative anticancer agent indole-3-carbinol (I3C), which is present in vegetables of the Brassica genus. At concentrations above 10 microM, DIM inhibited DNA synthesis and cell proliferation in both estrogen receptor replete (MCF-7)

Activation and potentiation of interferon-gamma signaling by 3,3'-diindolylmethane in MCF-7 breast cancer cells.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
3,3'-Diindolylmethane (DIM), a natural autolytic product in plants of the Brassica genus, including broccoli, cauliflower, and Brussels sprouts, exhibits promising cancer protective activities, especially against mammary neoplasia in animal models. We observed previously that DIM induced a G(1)
3,3'-Diindolylmethane (DIM) is a stable condensation product of indole-3-carbanol, a potential breast cancer chemoprevention agent. Human breast cancer cell lines were studied to better understand its mechanisms. In vitro experiments were done in MCF-7, T47D, BT-20 and BT-474 cells using MTT, ELISA,
Dietary indole-3-carbinol (I3C), a natural compound present in vegetables of the genus Brassica, showed clinical benefits and caused apoptosis in breast cancer cells. Our laboratory and others have shown that I3C induces apoptosis in breast cancer cells mediated by inactivation of Akt and nuclear
Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge