Sayfa 1 itibaren 52 Sonuçlar
Plants have divergent defense mechanisms against the harmful effects of heavy metals present in excess in soils and groundwaters. Poplars (Populus spp.) are widely cultivated because of their rapid growth and high biomass production, and members of the genus are increasingly used as experimental
Ozone (O3) and drought increase tree oxidative stress. To protect forest health, we need to improve risk assessment, using metric model such as the phytotoxic O3 dose above a threshold of y nmol·m-2·s-1 (PODy), while taking into account detoxification mechanisms and interacting stresses. The impact
Overexpression of bacterial γ-glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd(2+) influx in association with H(+) /Ca(2+) , Cd
Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation
The effects of food plant on larval performance and midgut detoxification enzymes were investigated in larvae of the luna moth,Actias luna. Neonate larvae were fed leaves of black cherry, cottonwood, quaking aspen, white willow, red oak, white oak, tulip tree, paper birch, black walnut, butternut,
Phenols are present in the environment and commonly in contact with humans and animals because of their wide applications in many industries. In a previous study, we reported that uridine diphosphate-glucose-dependent glucosyltransferase PtUGT72B1 from Populus trichocarpa has high activity in
To characterize the dynamics of Cd²⁺ flux in the rhizosphere and to study cadmium (Cd) plant-internal partitioning in roots, wood, bark and leaves in relation to energy metabolism, reactive oxygen species (ROS) formation and antioxidants, Populus × canescens plantlets were exposed to either 0 or 50
Eucalyptus camaldulensis is a tree species in the Myrtaceae that exhibits extremely high resistance to aluminum (Al). To explore a novel mechanism of Al resistance in plants, we examined the Al-binding ligands in roots and their role in Al resistance of E. camaldulensis. We identified a novel type
Heavy metal contaminations have attracted increasing concern worldwide due to their potential damages to the whole ecosystem. This study investigated the heavy metal-accumulation and excretion in, and food utilization of the gypsy moth (Lymantria dispar) larvae that were fed with leaves plucked from
Populus euphratica Olivier is widely established in arid and semiarid regions but lags in the availability of transcriptomic resources in response to water deficiency. To investigate the mechanisms that allow P. euphratica to maintain growth in arid regions, the responses of the plant to soil water
Ozone is an air pollutant that causes oxidative stress by generation of reactive oxygen species (ROS) within the leaf. The capacity to detoxify ROS and repair ROS-induced damage may contribute to ozone tolerance. Ascorbate and glutathione are known to be key players in detoxification. Ozone effects
Populus yunnanensis was employed as a model species to detect sexual differences in growth, physiological, biochemical, and ultrastructural responses to cadmium (Cd) stress, nitrogen (N) deposition, and their combination. Compared with the control conditions, Cd decreased plant biomass, damaged the
This study clarifies the mechanisms of Cd uptake, translocation and detoxification in Populus cathayana Rehder females and males, and reveals a novel strategy for dioecious plants to cope with Cd contamination. Females exhibited a high degree of Cd uptake and root-to-shoot translocation, while males
Populus euphratica, the well-known tree halophyte, tolerates the stress of high levels of salt. We previously showed that the transmembrane domain 11 (TM11) of PeNHX3, a Na+,K+/H+ antiporter from P. euphratica, was crucial for Na+ and Li+ transport in a yeast growth assay. Here, we examined the role
Effects of copper-smelter-related deposition of heavy metals in the soil on carbohydrate metabolism of fine roots of the native European black poplar were investigated in spring and autumn. Total soluble non-structural carbohydrates in fine roots from trees growing in the polluted habitat were lower