Relative density of urine: methods and clinical significance.
Ключові слова
Анотація
The physical properties and chemical composition of urine are highly variable and are determined in large measure by the quantity and the type of food consumed. The specific gravity is the ratio of the density to that of water, and it is dependent on the number and weight of solute particles and on the temperature of the sample. The weight of solute particles is constituted mainly of urea (73%), chloride (5.4%), sodium (5.1%), potassium (2.4%), phosphate (2.0%), uric acid (1.7%), and sulfate (1.3%). Nevertheless, urine osmolality depends only on the number of solute particles. The renal production of maximally concentrated urine and formation of dilute urine may be reduced to two basic elements: (1) generation and maintenance of a renal medullary solute concentration hypertonic to plasma and (2) a mechanism for osmotic equilibration between the inner medulla and the collecting duct fluid. The interaction of the renal medullary countercurrent system, circulating levels of antidiuretic hormone, and thirst regulates water metabolism. Renin, aldosterone, prostaglandins, and kinins also play a role. Clinical estimation of the concentrating and diluting capacity can be performed by relatively simple provocative tests. However, urinary specific gravity after taking no fluids for 12 h overnight should be 1.025 or more, so that the second urine in the morning is a useful sample for screening purposes. Many preservation procedures affect specific gravity measurements. The concentration of solids (or water) in urine can be measured by weighing, hydrometer, refractometry, surface tension, osmolality, a reagent strip, or oscillations of a capillary tube. These measurements are interrelated, not identical. Urinary density measurement is useful to assess the disorders of water balance and to discriminate between prerenal azotemia and acute tubular necrosis. The water balance regulates the serum sodium concentration, therefore disorders are revealed by hypo- and hypernatremia. The disturbances are due to renal and nonrenal diseases, mainly liver, cardiovascular, intestinal, endocrine, and iatrogenic. Fluid management is an important topic of intensive care medicine. Moreover, the usefulness of specific gravity measurement of urine lies in interpreting other findings of urinalysis, both chemical and microscopical.