Сторінка 1 від 110 результати
PURPOSE
Amide proton transfer (APT) MRI is promising to serve as a surrogate metabolic imaging biomarker of acute
stroke. Although the magnetization transfer ratio asymmetry (MTR
asym ) has been used commonly, the origin of pH-weighted MRI effect remains an area of
Chemical exchange saturation transfer (CEST) potentially provides the ability to detect small solute pools through indirect measurements of attenuated water signals. However, CEST effects may be diluted by various competing effects, such as non-specific magnetization transfer (MT) and asymmetric MT
pH-sensitive amide proton transfer (APT) MRI provides a surrogate metabolic biomarker that complements the widely-used perfusion and diffusion imaging. However, the endogenous APT MRI is often calculated using the asymmetry analysis (MTRasym), which is susceptible to an inhomogeneous shift due to
Recent studies suggest that myeloperoxidase (MPO)-dependent oxidative stress plays a significant role in brain injury in stroke patients. We previously showed that N-acetyl lysyltyrosylcysteine amide (KYC), a novel MPO inhibitor, significantly decreased infarct size, blood-brain barrier leakage,
pH-weighted amide proton transfer (APT) MRI is sensitive to tissue pH change during acute ischemia, complementing conventional perfusion and diffusion stroke imaging. However, the currently used pH-weighted magnetization transfer (MT) ratio asymmetry (MTRasym) analysis is of limited pH
OBJECTIVE
To apply amide proton transfer magnetic resonance imaging (APT-MRI) technique to acute ischemic stroke, and to discuss clinical values of the APT-MRI main parameter - MTRasym(3.5 ppm).
METHODS
A total of 18 emergency admitted patients, with acute ischemic stroke from Beijing Hospital, were
pH-weighted amide proton transfer (APT) MRI is promising to serve as a new surrogate metabolic imaging biomarker for refined ischemic tissue demarcation. APT MRI with pulse-RF irradiation (pulse-APT) is an alternative to the routine continuous wave (CW-) APT MRI that overcomes the RF Amide proton transfer (APT) imaging may help identify the ischaemic penumbra in stroke patients, the classical definition of which is a region of tissue around the ischaemic core that is hypoperfused and metabolically stressed. Given the potential of APT imaging to complement existing BACKGROUND
Excitotoxic insults such as stroke may induce release of fatty acid ethanolamides (FAEs), contributing to the downstream events in the ischemic cascade. We therefore studied release of FAEs such as anandamide, palmitylethanolamide (PEA), and oleylethanolamide (OEA) in the brain of a
Amide proton transfer (APT) imaging is a variant form of chemical exchange saturation transfer (CEST) imaging that is based on the magnetization exchange between bulk water and labile endogenous amide protons. Given that chemical exchange is pH-dependent, APT imaging has been shown capable of
PURPOSE
The magnetization transfer and relaxation normalized
amide proton transfer (MRAPT) analysis is promising to provide a highly pH-specific mapping of tissue acidosis, complementing commonly used CEST asymmetry analysis. We aimed to develop a fast B
0 inhomogeneity
Background: Amide proton transfer (APT) MR imaging has shown great potential in the evaluation of stroke severity because of its sensitivity to acid environments. However, this promising MRI technique has not been used to assess treatment efficacy with regard to stroke recovery.
Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase
Growth factors promote plasticity in injured brain and improve impaired functions. For clinical application, efficient approaches for growth factor delivery into the brain are necessary. Poly(ester amide) (PEA)-derived microspheres (MS) could serve as vehicles due to their thermal and mechanical
The ischemic tissue becomes acidic after initiation of anaerobic respiration, which may result in impaired tissue metabolism and, ultimately, in severe tissue damage. Although changes in the major cerebral metabolites can be studied using magnetic resonance (MR) spectroscopy (MRS)-based techniques,