11 результати
BACKGROUND
To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal
Malaria, caused by protozoan parasites of the genus Plasmodium, affects up to 500 million individuals and kills over 1 million people every year. The increasing resistance of the malaria parasites has enforced strategies for finding new drug targets. In recent years, enzymes associated with the
Amorpha-4,11-diene synthase (ADS) of Artemisia annua L. is a sesquiterpene cyclase that catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene in the biosynthesis of the antimalarial artemisinin. To explore the mechanisms regulating the tissue-specific and developmental
Artemisinin, an effective antimalarial compound, is isolated from the medicinal plant Artemisia annua L. However, because of the low content of artemisinin in A. annua, the demand of artemisinin exceeds supply. Previous studies show that the artemisinin biosynthesis is promoted by light in A. annua.
Artemisia annua is an important medicinal plant producing the majority of the antimalarial compound artemisinin. Jasmonates are potent inducers of artemisinin accumulation in Artemisisa annua plants. As the receptor of jasmonates, the F-box protein COI1 is critical to the JA signaling required for
Isoprenoids are a highly diverse and important group of natural compounds. The enzyme 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) catalyzes a key regulatory step in the non-mevalonate isoprenoid biosynthetic pathway in eubacteria and in plant plastids. For example, in Artemisia annua DXR
Target-based approaches toward new antimalarial treatments are highly valuable to prevent resistance development. We report several series of pyrazolopyran-based inhibitors targeting the enzyme serine hydroxymethyltransferase (SHMT), designed to improve microsomal metabolic stability and to identify
The effective anti-malarial drug artemisinin (AN) isolated from Artemisia annua is relatively expensive due to the low AN content in the plant as AN is only synthesized within the glandular trichomes. Therefore, genetic engineering of A. annua is one of the most promising approaches for improving
Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope
The folate biosynthetic pathway and its key enzyme dihydrofolate reductase (DHFR) is a popular target for drug development due to its essential role in the synthesis of DNA precursors and some amino acids. Despite its importance, little is known about plant DHFRs, which, like the enzymes from the
Herbicide resistance is driving a need to develop new herbicides. The evolutionary relationship between apicomplexan parasites, such as those causing malaria, and plants is close enough that many antimalarial drugs are herbicidal and so represent novel scaffolds for herbicide development. Using a