Сторінка 1 від 26 результати
Aucubin, an iridoid glycoside isolated from the leaves of Aucuba japonica, inhibits human non-small cell lung cancer A549 cells by blocking cell cycle progression in the G(0)/G(1) phase and inducing apoptosis. An ELISA showed that the G(0)/G(1) phase arrest is due to p53-mediated induction of p21.
To elucidate a possible mechanism for the anti-inflammatory action of iridoid glycosides, the effects of both aucubin (AU) and its hydrolyzed product (H-AU) by beta-glucosidase treatment were studied on the production of TNF-alpha in RAW 264.7 cells. H-AU suppressed the production of both mRNA for
To verify the anti-inflammatory potency of iridoids, seven iridoid glucosides (aucubin, catalpol, gentiopicroside, swertiamarin, geniposide, geniposidic acid and loganin) and an iridoid aglycone (genipin) were investigated with in vitro testing model systems based on inhibition of cyclooxygenase
Aucubin is an iridoid glycoside with a wide range of biological activities, including anti-inflammatory, anti-microbial, anti-algesic as well as anti-tumor activities. Recently, it has been shown that aucubin prevents neuronal death in the hippocampal CA1 region in rats with diabetic encephalopathy.
Aucubin (AU) is the main active ingredient of Aucuba japonica which has showed many positive effects such as anti-inflammation and liver protection. Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. In this research, we explored the effects of AU on the
Neuroinflammation and imbalance of neurotransmitters play pivotal roles in seizures and epileptogenesis. Aucubin (AU) is an iridoid glycoside derived from Eucommia ulmoides that possesses anti-inflammatory and neuroprotective effects. However, the anti-seizure effects of AU have not been reported so
Aucubin is an iridoid glycoside that is widely prevalent in traditional medicinal herbs, such as Eucommia ulmoides Oliv., Aucuba japonica Thunb. and Plantago asiatica L. This review aims to provide a comprehensive summary of the source, biological activity, pharmacokinetics and toxicology of aucubin
OBJECTIVE
Aucubin, an iridoid glycoside, was isolated from seeds of Eucommia ulmoides Oliver. This study was aimed to evaluate the protective effect of aucubin against ethanol-induced gastric mucosal injury in mice.
METHODS
Mice were orally administrated with aucubin (20, 40 and 80mg/kg) for 3
Liver ischemia-reperfusion injury (IRI) is a common clinical event with high morbidity in patients undergoing complex liver surgery or having abdominal trauma. Inflammatory and oxidative stress responses are the main contributing factors in liver IRI. The iridoid glucoside aucubin (AU) has good
Obesity is closely associated with a state of chronic, low-grade inflammation characterized by abnormal cytokine production and activation of inflammatory signaling pathways in adipose tissue. Tumor necrosis factor (TNF)-α is chronically elevated in adipose tissues of obese rodents and humans.
Injection of exogenous hyaluronic acid (HA) into the joint capsule improves symptoms of early stage osteoarthritis (OA). However, reactive oxygen species degrade HA into small oligosaccharides that can elicit pro-inflammatory responses. Likewise, disturbance of the antioxidant enzyme Aucubin is pharmacologically active natural compound which possesses numerous beneficial properties. This study aimed to evaluate the protective effect of aucubin against cisplatin (CP)-induced acute kidney injury in mice and the mechanism of its action. Aucubin was administrated to mice orally or
BACKGROUND
Plantago major has been reported to have anticancer and anti-inflammatory properties. However, its antiproliferative and anti-inflammatory mechanisms have not been fully elucidated. Moreover, which plant parts are more suitable as starting materials has not been explored.
OBJECTIVE
To
The methanolic extract of the flowering stems of Vitex agnus-castus yielded three new iridoids: 6'-O-foliamenthoylmussaenosidic acid (agnucastoside A), 6'-O-(6,7-dihydrofoliamenthoyl)mussaenosidic acid (agnucastoside B) and 7-O-trans-p-coumaroyl-6'-O-trans-caffeoyl-8-epiloganic acid (agnucastoside
As part of our continuing efforts in the search for potential biologically active compounds from medicinal plants, we have isolated 18 compounds including two novel nitrogen containing diterpenes from extracts of the fruits of Vitex agnus-castus. These isolates, along with our previously obtained