Сторінка 1 від 17 результати
The synthetic challenges associated with the selective synthesis of α-Santalene (1), (Z)-α-Santalol (2), β-Santalene (3), and most importantly (Z)-β-Santalol (4) have interested the world's synthetic chemists for decades. These molecules, lovely examples of nature's exquisite creations, have been
A rare type of sesquiterpene with a spiro bicyclic system (1) and seven new (2-8) and four known (9-12) β-santalol derivatives were isolated from the heartwood of Santalum album (Santalaceae). The structures of these new compounds were determined by analysis of extensive spectroscopic data. The
Sandalwood (Byakudan in Japanese; Santalum album L.) is used as a popular sedative in Oriental medicine. Extracts of the wood of Santalum album were obtained by successively extracting with benzene, chloroform, methanol and water. Each of these fractions was tested for activity on the central
The use of gas chromatography (GC)-mass spectrometry (MS), GC-time-of-flight MS (TOFMS), comprehensive two-dimensional GC (GCxGC)-flame ionization detection (FID), and GCxGC-TOFMS is discussed for the characterization of the eight important representative components, including Z-alpha-santalol,
East Indian Sandalwood Oil (EISO) has diverse beneficial effects and has been used for thousands of years in traditional folk-medicine for treatment of different human ailments. However, there has been no in-depth scientific investigation to decipher the neuroprotective and geroprotective mechanism
West Australian sandalwood (Santalum spicatum) has long been exploited for its fragrant, sesquiterpene-rich heartwood; however sandalwood fragrance qualities vary substantially, which is of interest to the sandalwood industry. We investigated metabolite profiles of trees from the arid northern and
The chemical composition of volatile compounds from pericarp oils of Indian sandalwood, Santalum album L., isolated by hydrodistillation and solvent extraction, were analyzed by GC and GC-MS. The pericarps yielded 2.6 and 5.0% volatile oil by hydrodistillation and n-hexane extraction, and they were
We have tried to elucidate the origin of phytochemical variation in trees by studying concomitantly the chemical and microsatellite variations in Santalum austrocaledonicum. Eight natural populations were sampled in the New-Caledonian archipelago, a total of 157 individuals being analyzed. The main
Four commercial qualities of Hawaiian sandalwood oil produced from wood of Santalum paniculatum originating from the island of Hawaii ("The Big Island") were analyzed using GC and GC-MS. Main constituents of the oils were (Z)-α-santalol (34.5-40.4%) and (Z)-β-santalol (11.0-16.2%). An odor
Phenotypic variation in heartwood and essential-oil characters of Santalum austrocaledonicum was assessed across eleven populations on seven islands of Vanuatu. Trees differed significantly in their percentage heartwood cross-sectional area and this varied independently of stem diameter. The
Six new sesquiterpenes, (Z)-2beta-hydroxy-14-hydro-beta-santalol (1), (Z)-2alpha-hydroxy-albumol (2), 2R-(Z)-campherene-2,13-diol (3), (Z)-campherene-2beta,13-diol (4), (Z)-7-hydroxynuciferol (5), and (Z)-1beta-hydroxy-2-hydrolanceol (6), together with five known compounds, (Z)-alpha-santalol (7),
Sandalwood oil is one of the world's most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, β-, and
Tropical sandalwood (Santalum album) produces one of the world's most highly prized fragrances, which is extracted from mature heartwood. However, in some places such as southern India, natural populations of this slow-growing tree are threatened by over-exploitation. Sandalwood oil contains four
It is well known that aromatic essential oils extracted from the heartwood of Santalum album L. have wide economic value. However, little is known about the role of terpenoids in response to various adverse environmental stresses as other plants do in the form of signals during Trade and historic oils from 'sandalwoods', labelled as Amyris balsamifera, Eremophila mitchelli, Fusanus acuminatus (= Santalum acuminatum), Santalum album, S. austrocaledonicum, S. latifolium, S. spicatum and S. yasi, were assessed using gas chromatography-mass spectrometry (GC-MS). Using GC-MS,