Сторінка 1 від 99 результати
Inflammatory lesions of periodontal disease contain all the cellular components, including abundant activated/memory T- and B-cells, necessary to control immunological interactive networks and to accelerate bone resorption by RANKL-dependent and -independent mechanisms. Blockade of RANKL function
OBJECTIVE
Diets rich in animal protein, such as the typical American diet, are thought to create a high acid load. An association between acid load and bone loss has led to the idea that providing positive alkaline salt therapy could have beneficial effects on bone metabolism. The objective of this
The amount of sodium chloride in the diet of industrialized nations far exceeds physiological requirements. The impact of abundant dietary salt on skeletal health has yet to be established, but is potentially detrimental through increased urinary calcium losses. We examined the effect of increased
Metabolic acidosis induces net calcium efflux (JCa+) from cultured bone, in part, through an increase in osteoclastic resorption and a decrease in osteoblastic formation. In humans provision of base as potassium (K+) citrate, but not sodium (Na+) citrate, reduces urine Ca (UCa), and oral KHCO3
BACKGROUND
Bicarbonate has been implicated in bone health in older subjects on acid-producing diets in short-term studies.
OBJECTIVE
The objective of this study was to determine the effects of potassium bicarbonate and its components on changes in bone resorption and calcium excretion over 3 months
A high-salt diet increases urinary calcium excretion. Its effect on bone, however, is less clear. Recent research suggests that a high-salt diet increases the rate of bone resorption in postmenopausal women over a 4-week period, but increased potassium intake (as potassium citrate) ameliorates this
Potassium peroxydiphosphate (KPDP) is a slowly hydrolyzed pyrophosphate analog that can release hydrogen peroxide during hydrolysis. We tested its effects on the resorption of cultured fetal rat long bones as measured by the release of previously incorporated 45Ca, both by direct addition of KPDP to
BACKGROUND
The Western diet may be a risk factor for osteoporosis. Excess acid generated from high protein intakes increases calcium excretion and bone resorption. Fruit and vegetable intake could balance this excess acidity by providing alkaline salts of potassium. Algorithms based on dietary
The effects of the potassium channel (Kv1.3) blocker kaliotoxin on T-cell-mediated periodontal bone resorption were examined in rats. Systemic administration of kaliotoxin abrogated the bone resorption in conjunction with decreased RANKL mRNA expression by T-cells in gingival tissue. This study
BACKGROUND
Bone loss is a critical concern for space travelers, and a dietary countermeasure would be of great benefit. Dietary protein and potassium-associated bicarbonate precursors may have opposing effects on the acid-base balance in the body and therefore on bone loss.
OBJECTIVE
In 2 studies,
High sodium chloride (NaCl) intake can induce low-grade metabolic acidosis (LGMA) and may thus influence bone and protein metabolism. We hypothesized that oral potassium bicarbonate (KHCO(3)) supplementation may compensate for NaCl-induced, LGMA-associated bone resorption and protein losses. Eight
Periodontal disease infection with oral biofilm microorganisms initiates host immune response and signs of periodontitis, including bone resorption. This review delineates some mechanisms underlying the host immune response in periodontal infection and alveolar bone resorption. Activated T
Tamoxifen inhibits bone resorption by disrupting calmodulin-dependent processes. Since tamoxifen inhibits protein kinase C in other cells, we compared the effects of tamoxifen and the PKC inhibitor, bis indolylmaleimide II (bIM), on bone resorption and acid transport activity in isolated membrane
BACKGROUND
Patients undergoing Roux-en-Y gastric bypass (RYGB) surgery are prone to developing bone loss and kidney stones. The goal of the present study was to test the hypothesis that an effervescent formulation of potassium calcium citrate (PCC) would avert metabolic complications by providing
OBJECTIVE
Potassium channels of the ATP-sensitive family (KATP channel) are inhibited by increase in intracellular ATP. Electrophysiological studies have demonstrated that the kinetics and pharmacological properties of KATP channels vary among different tissues, suggesting structurally and