Сторінка 1 від 124 результати
Natural polyphenols like oligomeric catechins (procyanidins) derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are
Background: The Myosin Phosphatase (MP) holoenzyme is composed of a Protein Phosphatase type 1 (PP1) catalytic subunit and a regulatory subunit termed Myosin Phosphatase Target subunit 1 (MYPT1). Besides dephosphorylation of myosin, MP
The Ras/Raf/MEK/ERK pathway has been identified as a major, druggable regulator of melanoma. Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, resulting in constitutive melanoma hyperproliferation. A selective BRAF inhibitor showed remarkable clinical activity
Purple acid phosphatase (PAP) encoding genes are a multigene family. PAPs require iron (Fe) to exert their functions that are involved in diverse biological roles including Fe homeostasis. However, the possible roles of PAPs in response to excess Fe remain unknown. In this study, we attempted to
The transmembrane protein-tyrosine phosphatase (PTP) DEP-1 (density-enhanced phosphatase) is a candidate tumor suppressor in the colon epithelium. We have explored the function of DEP-1 in colon epithelial cells by inducible re-expression in a DEP-1-deficient human colon cancer cell line.
Protein phosphatase-1 (PP1) and protein phosphatase-2A (PP2A) are responsible for the dephosphorylation of the majority of phosphoserine/threonine residues in cells. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG) and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), polyphenolic
Effect of 5-100 microM epigallocatechin gallate (EGCG) on hepatic glucose 6-phosphatase (G6Pase) system was investigated. EGCG inhibited G6Pase in intact but not in permeabilized rat liver microsomes, suggesting the interference with the transport. However, EGCG did not hinder microsomal glucose
The changes of photosynthetic parameters, water use efficiency (WUE), fatty acid composition, chlorophyll (Chl) content, malondialdehyde (MDA) content, ATPase and acid phosphatase activities, fluoride (F) content, and leaf anatomical structure of two tea cultivars, "Pingyangtezao" (PY) and
Members of the Prevotella intermedia group possess protein tyrosine phosphatase (PTPase). The purpose of this study was to investigate the effects of catechin derivatives from Japanese green tea on the activity of PTPase in P. intermedia and related organisms. Multilocus enzyme electrophoresis of
Protein tyrosine phosphatase 1B (PTP1B) plays a key role in metabolic signaling, thereby making it an exciting drug target for type 2 diabetes and obesity. Besides, there is substantial evidence that shows its overexpression is involved in breast cancer, which suggests that selective PTP1B
Green tea polyphenol, epigallocatechin-3-gallate (EGCG) differentially regulates the cellular growth of cancer cells in a p53-dependent manner through apoptosis and/or cell cycle arrest. In an effort to further elucidate the mechanism of differential growth regulation by EGCG, we have investigated
Tea is widely consumed all over the world. Studies have demonstrated the role of tea in prevention and treatment of various chronic diseases including diabetes and obesity, but the underlying mechanism is unclear. PTP1B is a widely expressed tyrosine phosphatase which has been defined as a target
The injurious effects of reactive oxygen species on osteoblasts and the potential protective role played by green tea polyphenols (GtPP) were investigated using primarily cultured rat calvarial osteoblasts. Oxidative stress was induced in cultured osteoblasts, either by adding 100 mmol/L H2O2 or by
Green tea has been reported to possess antioxidant, antitumorigenic, and antibacterial qualities that regulate the endocrine system. Previous epidemiological studies found that the bone mineral density (BMD) of postmenopausal women with a habit of tea drinking was higher than that of women without
We have previously reported that decaffeinated green tea extract (GTE) in combination with voluntary exercise (Ex) reduces metabolic syndrome in high fat-fed C57BL/6J mice. Here, we examined for the first time the effect of treatment with 77 mg/g GTE, Ex, or both (GTE + Ex) on genes related to the