Сторінка 1 від 16 результати
Neonatal lethal skeletal dysplasias are rare and typically involve thoracic malformations and severe limb shortening. We report on a newborn boy manifesting an osteochondrodysplasia associated with fatal respiratory insufficiency who had normal lung volumes and extremity lengths. His disorder
Cleidocranial dysplasia (CCD) is a skeletal dysplasia caused by heterozygous mutations of RUNX2, a gene that is essential for the mineralization of bone and tooth. We isolated primary dental pulp cells from a 10-y-old patient and tested their proliferative capacity, alkaline phosphatase activity,
Cleidocranial dysplasia (CCD), an autosomal dominant human bone disease, is thought to be caused by heterozygous mutations in RUNX2/PEBP2alphaA/CBFA1. To understand the mechanism underlying the pathogenesis of CCD, we studied a novel mutant of RUNX2, namely CCDalphaA376, originally identified in a
BACKGROUND
Patients with cleidocranial dysplasia (CCD) present a thickend and fibrotic gingiva.
OBJECTIVE
To the best of our knowledge it was analysed for the first time, whether this is correlated with an increased rate of collagen I in oral mucosa.
METHODS
27 soft tissue biopsies of six
Cleidocranial dysplasia (CCD) is an autosomal dominant disease characterized by skeletal abnormalities which is secondary to haploinsufficiency of the transcription factor Runx2 that plays a role in osteoblast differentiation. In this report, we present a female patient who came to our Rheumatology
Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal dysplasia due to mutations causing haploinsufficiency of RUNX2, an osteoblast transcription factor specific for bone and cartilage. The classic form of CCD is characterized by delayed closure of the fontanels, hypoplastic or
Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal dysplasia characterised by hypoplastic clavicles, patent fontanelles, short stature, tooth anomalies and other variable skeletal changes. Different mutations of the RUNX2/CBFA1 gene (MIM 600211) have been detected in
Cleidocranial dysplasia (OMIM 119600) is a skeletal dysplasia caused by mutations in the bone/cartilage specific osteoblast transcription factor RUNX2 gene. It is characterised by macrocephaly with persistently open sutures, absent or hypoplastic clavicles, dental anomalies, and delayed ossification
OBJECTIVE
To explore the role of dental follicle cells (DFCs) with a novel cleidocranial dysplasia (CCD) causative gene RUNX2 mutation (DFCsRUNX2+/m ) in delayed permanent tooth eruption.
METHODS
A CCD patient with typical clinical features was involved in this study. DFCsRUNX2+/m were cultured and
OBJECTIVE
Cleidocranial dysostosis (CCD) is a skeletal disorder associated with dental anomalies such as failure or delayed eruption of permanent teeth and multiple impacted supernumerary or permanent teeth. Absence of cellular cementum at the root apex is presumed to be one of the factors for
To identify a novel mutation of Runx2 gene in Cleidocranial Dysplasia (CCD) patients and to characterize the functional consequences of this mutation. The subjects consisted of 12 Korean CCD patients. After oral epithelial cells were collected using a mouthwash technique, genomic DNA was extracted.
Runt-related transcription factor 2 (Runx2) is an essential transcription factor for osteoblast differentiation, and is activated by mechanical stress to promote osteoblast function. Cleidocranial dysplasia (CCD) is caused by mutations of RUNX2, and CCD patients exhibit malocclusion and often
OBJECTIVE
Cleidocranial dysplasia (CCD), mainly caused by RUNX2 mutation, is a dominantly inherited skeletal disorder with many dental abnormalities, characterized by delayed permanent tooth eruption. In this study, we explored a novel RUNX2 mutation and the effect of RUNX2 mutation on osteogenic
This report reviews the current research that has impacted on our understanding of osteogenesis. Recent studies indicate that the transcription factor Osf2 (osteoblast specific transcription factor 2)/Cbfa1 (core binding factor activity 1) serves as a Master Gene regulating osteoblast-specific gene
Runx2/CBFA1/AML3 is a master regulator of the osteoblast lineage and has been shown to directly control the transcription of numerous osteoblast-specific genes including alkaline phosphatase, osteopontin, and type I collagen. In its absence, ossification does not occur during development resulting