Сторінка 1 від 23 результати
The strobilurin class of fungicides comprises a variety of synthetic plant-protecting compounds with broad-spectrum antifungal activity. In the present study, we demonstrate that a strobilurin fungicide, F 500 (Pyraclostrobin), enhances the resistance of tobacco (Nicotiana tabacum cv Xanthi nc)
Blue mold, caused by Peronospora tabacina, can be economically damaging to cigar wrapper tobacco (Nicotiana tabacum). We evaluated acibenzolar-S-methyl (ASM) as Actigard 50WG alone and in combination with a standard fungicide program for efficacy against blue mold on shade-grown cigar wrapper
In June 2011, 15 transplant beds of broadleaf cigar wrapper tobacco (Nicotiana tabacum L., cv. C9) plants in Hartford County, Connecticut, were observed with almost every plant diseased. Leaf lesion symptoms ranged from small (2 to 3 mm) water-soaked spots to larger (2 to 3 cm) lesions. Disease was
The γ-keto triazole derivative 4,4-dimethyl-1-(2-methoxyphenyl)-1-(1,2,4-triazol-1-yl)-1-penten-3-one is toxic to Nicotiana tabacum L. cv. Xanthi plants or cell cultures. Analysis of the sterol composition of treated wild-type plant material demonstrates that this herbicide is an inhibitor of the
The tobacco blue mold pathogen, Peronospora tabacina, has been periodically reintroduced to the Connecticut River Valley cigar wrapper tobacco (Nicotiana tabacum) area of Connecticut and Massachusetts. Once introduced, there is a greater likelihood of disease in following years. Blue mold occurred
To understand the phytotoxic effects that certain bezimidazole fungicides exert on plant growth, the aim of the present study was to determine the effect of the fungicide carbendazim, on foliar biomass, pigment content, and nutrient levels in tobacco plants (Nicotiana tabacum L. cv. Tennessee 86).
Arabidopsis thaliana and Nicotiana tabacum were transformed to blasticidin S (BS) resistance with BSD (the BS deaminase gene from Aspergillus terreus) using the Agrobacterium-mediated transformation method. Expression of BSD allowed direct selection of transformants by the fungicide, and both kinds
In view of the essential role of phenolic compounds in the development of pathogen resistance in plants, and given the influence that fungicides exert over phenolic metabolism, the aim of the present study was to determine the effect of the application of different rates of fungicide on the
Plant secondary metabolites, such as stilbenes, have fungicidal potential and have been found in several plant species. Stilbenes in grapevine, such as resveratrol and pterostilbene, have recently attracted much attention, they are not only helping the plant to fight against pathogen attack, but
Powdery mildew (PM), which is mainly caused by Podosphaera xanthii, is a serious biotrophic pathogen disease affecting field-grown and greenhouse-grown cucurbit crops worldwide. Because fungicides poorly control PM, the development and cultivation of PM-resistant varieties is critical. A
The selection of biochemical mutants has been undertaken in order to elucidate regulatory and functional aspects of sterol biosynthesis in plants. 2-(4-Chlorophenyl)-3-phenyl-1-(1H-1,2,4- triazol-1-yl)-2,3-oxidopropane (LAB170250F), an experimental fungicide of the triazole family, was used as a
Float bay production of seedlings accounts for approximately 62% of tobacco (Nicotiana tabacum L.) transplant production in South Carolina. Float systems utilize styrofoam trays containing soilless media that float in plastic-lined bays filled with nutrient solution. Oomycete fungi with motile
Azoxystrobin is the only synthetic, systemic fungicide labeled in the United States for management of frogeye leaf spot (FLS) of tobacco (Nicotiana tabacum L.), caused by Cercospora nicotianae. Though traditionally considered a minor disease in the United States, FLS has recently
Nicotiana tabacum protoplasts have been transformed by Agrobacterium tumefaciens containing a T-DNA in which the gene CYP51A1 encoding lanosterol-14-demethylase (LAN14DM) from Saccharomyces cerevisiae is under the control of a cauliflower mosaic virus (CaMV) 35S promoter. Two transformants strongly
Background: Black shank, caused by the oomycete pathogen Phytophthora nicotianae, is responsible for huge economic losses worldwide. Research has focused on biocontrol to prevent disease and to minimize the use of synthetic