Сторінка 1 від 39 результати
Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 (GmItpk2), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or
Although myo-inositol is included in media for the successful growth of plant tissues, the actual requirement of most tissues, including soybean (Glycine max) callus in suspension culture, for myo-inositol has not been demonstrated. We have made use of deoxyglucose to reduce intracellular levels of
A phosphate-hydrolyzing activity from Glycine max embryo axes was purified by a series of chromatographic steps and electroelution from activity gels, and demonstrated to be an inositol-1 (or 4)-monophosphatase by partial internal amino acid sequence. This enzyme hydrolyzed ATP, sodium pyrophosphate
The knowledge on consequences of cross-breeding of induced low phytic acid ( lpa) soybean ( Glycine max L. Merr.) mutants on the contents of phytic acid (InsP6) and lower inositol phosphate isomers (InsP2-InsP5) in the resulting progenies is limited. Therefore, MIPS1
Phytic acid (PA) is implicative in a spectrum of biochemical and physiological processes involved in plant stress response. Inositol 1,3,4, Tris phosphate 5/6 kinase (ITPK), a polyphosphate kinase that converts Inositol 1,3,4 trisphosphate to Inositol 1,3,4,5/6 tetra phosphate, averting the inositol
Inositol derivative compounds provide a nutrient source for soil bacteria that possess the ability to degrade such compounds. Rhizobium strains that are capable of utilizing certain inositol derivatives are better colonizers of their host plants. We have cloned and determined the nucleotide sequence
Soybean (Glycine max) meal is an important protein source. Soybean meal with lower phytate and oligosaccharides improves meal quality. A single recessive mutation in soybean myo-inositol 1-phosphate synthase (Gm-lpa-TW75-1) confers a seed phenotype with low phytate and increased inorganic phosphate.
O-alpha-D-Galactopyranosyl-(1-->2)-D-chiro-inositol, herein named fagopyritol B1, was identified as a major soluble carbohydrate (40% of total) in buckwheat (Fagopyrum esculentum Moench, Polygonaceae) embryos. Analysis of hydrolysis products of purified compounds and of the crude extract led to the
Phytic acid, a phosphorylated derivative of myo-inositol, functions as the major storage form of phosphorus in plant seeds. Myo-inositol phosphates, including phytic acid, play diverse roles in plants as signal transduction molecules, osmoprotectants, and cell wall constituents.
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids
Phytic acid (PA, myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is important to the nutritional quality of soybean meal. Organic phosphorus (P) in PA is indigestible in humans and non-ruminant animals, which affects nutrition and causes P pollution of ground water from animal wastes. Two novel
Low phytate soybeans are desirable both from a nutritional and economic standpoint. Inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase (IPK1), optimizes the metabolic flux of phytate generation in soybean and thus shows much promise as a likely candidate for pathway regulation. In the present
Two low-phytate soybean (Glycine max (L.) Merr.) mutant lines- V99-5089 (mips mutation on chromosome 11) and CX-1834 (mrp-l and mrp-n mutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans,
Inositol plays a role in membrane trafficking and signaling in addition to regulating cellular metabolism and controlling growth. In plants, the myo-inositol-1-phosphate is synthesized from glucose 6-phosphate in a reaction catalyzed by the enzyme myo-inositol-1-phosphate synthase (EC 5.5.1.4).
d-pinitol is the most commonly accumulated sugar alcohol in the Leguminosae family and has been observed to increase significantly in response to abiotic stress. While previous studies have identified genes involved in d-pinitol synthesis, no study has investigated transcript expression in planta.