Сторінка 1 від 35 результати
Forty-three deaths were recorded among pigs fed boiled cassava meal at a private piggery over a period of two years. There were signs of sudden death in some cases with blood exuding from the external nares, vomiting, muscular weakness and pain or reluctance to move, emaciation, and stunted growth.
Cassava brown streak disease (CBSD) caused by the rapidly evolving cassava brown streak viruses (CBSVs), causes immense yield losses to the cassava value chain in eastern and southern Africa. Western Africa, another region that heavily depends on cassava is under eminent threat from CBSD. Resistance
Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus
SUMMARY The replication-associated protein (Rep) of two distinct begomoviruses, the bipartite African cassava mosaic virus (ACMV) and the monopartite Tomato yellow leaf curl virus-China (TYLCV-C), elicits a reaction resembling a hypersensitive response (HR), associated with the induction of local
Cassava mosaic disease (CMD) is a major constraint to cassava production in sub-Saharan Africa. Under field conditions, evaluation for resistance to CMD takes 12-18 months, often conducted across multiple years and locations under pressure from whitefly-mediated transmission. Under greenhouse or
Cassava brown streak disease (CBSD), caused by the Ipomoviruses Cassava brown streak virus (CBSV) and Ugandan Cassava brown streak virus (UCBSV), is considered to be an imminent threat to food security in tropical Africa. Cassava plants were transgenically modified to generate small interfering RNAs
Growing dogs were divided into three groups and were fed on a control (rice) diet, a diet in which cassava (Manihot esculenta Crantz; gari) was used as the carbohydrate source, and the rice diet to which cyanide (equivalent to that present in gari) was added. Each group consumed its diet for 14
Cassava brown streak disease is a major disease affecting cassava. Along with foliar chlorosis and stem lesions, a very common symptom of cassava brown streak disease is the development of a dry, brown corky rot within the starch bearing tuberous roots, also known as necrosis. This paper presents a
In Sub-Saharan Africa cassava (Manihot esculenta Crantz) is one of the most important food crops where more than 40% of the population relies on it as their staple carbohydrate source. Biotic constraints such as viral diseases, mainly Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease
We have recently described a novel strategy for engineering resistance to African cassava mosaic virus (ACMV) in transgenic Nicotiana benthamiana plants using a virus-inducible promoter to control the expression of a plant ribosome-inactivating protein (RIP) transgene (Y. Hong et al., Virology 220,
The nuclear localized C2 protein of the monopartite begomovirus Tomato yellow leaf curl virus-China (TYLCV-C) contributes to viral pathogenicity. Here, we have investigated TYLCV-C C2 protein domains that play a role in the phenotype. Alignment of the C2 protein with 67 homologues from monopartite
Cassava anthracnose disease is a major economic disease of cassava in the tropics (2). Infection can lead to a significant loss in planting materials and total field crop failure. The disease has been reported to be transmitted mainly by a bug (Pseudotheraptus devastans Dist) (1). Open pollinated
During surveys covering 60 cassava (Manihot esculenta Crantz) fields, randomly selected (between latitude 4°55'N and 8°16'N) in south Ghana, and 27 fields in southeast (between 4°50'N and 7°56'N) Nigeria, 8-month-old or older stems of some cassava genotypes were found to be covered by grayish brown
Cassava brown streak disease (CBSD) is a leading cause of cassava yield losses across eastern and central Africa and is having a severe impact on food security across the region. Despite its importance, relatively little is known about the mechanisms behind CBSD viral infections. We have recently
Two types of geminate structures were purified from African cassava mosaic geminivirus (ACMV)-infected Nicotiana benthamiana plants and analyzed by electron cryomicroscopy and image reconstruction. After cesium sulfate density gradient centrifugation, they were separated into lighter top (T) and