Сторінка 1 від 16 результати
Systemic acquired resistance (SAR) is a state of heightened defense to a broad spectrum of pathogens that is activated throughout a plant following local infection. Development of SAR requires the translocation of one or more mobile signals from the site of infection through the vascular system to
The emission of fragrances can qualitatively and quantitatively differ in different parts of flowers. A detailed analysis was initiated to localize the floral tissues and cells which contribute to scent synthesis in STEPHANOTIS FLORIBUNDA (Asclepiadaceae) and NICOTIANA SUAVEOLENS (Solanaceae). The
Flower-specific benzenoid carboxyl methyltransferases from Stephanotis floribunda and Nicotiana suaveolens were biochemically and structurally characterized. The floral scents of both these species contain higher levels of methyl benzoate and lower levels of methyl salicylate. The S. floribunda
To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to
An alpha/ beta hydrolase annotated as a putative salicylate esterase within the genome of a species of Paenibacillus previously identified from differential and selective growth on Kraft lignin was structurally and functionally characterised. Feruloyl esterases are key to the degradation of lignin
Methyl salicylate and methyl benzoate have important roles in a variety of processes including pollinator attraction and plant defence. These compounds are synthesized by salicylic acid, benzoic acid and benzoic acid/salicylic acid carboxyl methyltransferases (SAMT, BAMT and BSMT) which are members
Interactions between the phytohormones ethylene, salicylic acid (SA), and jasmonic acid (JA) are thought to regulate the specificity of induced plant defenses against microbial pathogens and herbivores. However, the nature of these interactions leading to induced plant volatile emissions during
Pathogen-induced plant responses include changes in both volatile and non-volatile secondary metabolites. To characterize the role of bacterial pathogenesis in plant volatile emissions, tobacco plants, Nicotiana tabacum L. K326, were inoculated with virulent, avirulent, and mutant strains of
The white flowers of N. suaveolens emit a complex bouquet of fragrance volatiles. The dominant compounds are benzenoids (e.g. methyl benzoate, methyl salicylate, benzyl benzoate and benzyl salicylate), monoterpenes (1,8-cineole, limonene, sabinene, E-beta-ocimene, beta-beta-myrcene, alpha- and
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This
Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato.
The plant hormone auxin (indole-3-acetic acid [IAA]) is found both free and conjugated to a variety of carbohydrates, amino acids, and peptides. We have recently shown that IAA could be converted to its methyl ester (MeIAA) by the Arabidopsis (Arabidopsis thaliana) enzyme IAA carboxyl
Many plant species are known to emit herbivore-induced volatiles in response to herbivory. The spider mite Tetranychus urticae Koch is a generalist that can feed on several hundreds of host plant species. Volatiles emitted by T. urticae-infested plants of 11 species were compared: soybean (Glycine
Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such
Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local