Сторінка 1 від 57 результати
We overexpressed a mouse ornithine decarboxylase gene under the control of a constitutive and an estradiol-inducible promoter in Arabidopsis thaliana to increase our understanding of the regulation of polyamine metabolism. Of particular interest was the role of the substrate ornithine not only in
The immunoscreening method was used to isolate cDNAs of 1323 bp (ClOCT1) and 1433 bp (ClOCT2) encoding two ornithine carbamoyltransferases (OCT, EC 2.1.3.3) from the cDNA expression library of Canavalia lineata leaves constructed in a lambdaZAP Express vector. ClOCT1 and ClOCT2 encode 359 and 369
The nucleotide sequences of the complete ornithine carbamoyltransferase (OCT) gene containing 3,964 bp 3' region and 1,701 bp promoter region were determined from Canavalia lineata leaves. The exons range in size from 131 bp to 390 bp, while the introns range in size from 102 bp to the relatively
Cloning of the Arabidopsis thaliana genomic DNA fragment presumably corresponding to the promoter region of the ornithine-delta-aminotransferase (OAT) gene is reported. The reporter-gene construct, containing the Escherichia coli beta-glucouronidase gene under control of the OAT gene promoter was
BACKGROUND
Arginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria
Arabidopsis thaliana At4g17830 codes for a protein showing sequence similarity with the Escherichia coli N-acetylornithine deacetylase (EcArgE), an enzyme implicated in the linear ornithine (Orn) biosynthetic pathway. In plants, N-acetylornithine deacetylase (NAOD) activity has yet to be
To evaluate the relative importance of ornithine (Orn) as a precursor in proline (Pro) synthesis, we isolated and sequenced a cDNA encoding the Orn-delta-aminotransferase (delta-OAT) from Arabidopsis thaliana. The deduced amino acid sequence showed high homology with bacterial, yeast, mammalian, and
BACKGROUND
In plants, proline synthesis occurs by two enzymatic steps starting from glutamate as a precursor. Some bacteria, including bacteria such as Agrobacterium rhizogenes have an Ornithine Cyclodeaminase (OCD) which can synthesize proline in a single step by deamination of ornithine. In A.
A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the
Among the members of the mitochondrial carrier family, there are transporters that catalyze the translocation of ornithine and related substrates, such as arginine, homoarginine, lysine, histidine, and citrulline, across the inner mitochondrial membrane. The mitochondrial carriers ORC1, ORC2, and
The metabolism of glutamate into ornithine, arginine, proline, and polyamines is a major network of nitrogen-metabolizing pathways in plants, which also produces intermediates like nitric oxide, and γ-aminobutyric acid (GABA) that play critical roles in plant development and stress. While the
The arginine biosynthetic pathway represents an area of plant biochemistry that has been poorly investigated. Recently, the first enzyme of the arginine pathway, encoded by the N-acetyl-L-glutamate synthase gene (SlNAGS1), was isolated and characterized in tomato, and was found to be structurally
Unlike other eukaryotes, which can synthesize polyamines only from ornithine, plants possess an additional pathway from arginine. Occasionally non-enzymatic decarboxylation of ornithine could be detected in Arabidopsis extracts; however, we could not detect ornithine decarboxylase (ODC; EC 4.
Arginine acts as a precursor of polyamines in plants in two known pathways, agmatine and ornithine routes. It is decarboxylated to agmatine by arginine decarboxylase, and then transformed to putrescine by the consecutive action of agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase.
The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra × maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was