Сторінка 1 від 29 результати
The low phytic acid ( lpa) soybean ( Glycine max L. Merr.) mutant Gm-lpa-TW-1-M, resulting from a 2 bp deletion in GmMIPS1, was crossed with a commercial cultivar. F3 and F5 progenies were subjected to nontargeted GC-based metabolite profiling, allowing analysis of a broad
The knowledge on consequences of cross-breeding of induced low phytic acid ( lpa) soybean ( Glycine max L. Merr.) mutants on the contents of phytic acid (InsP6) and lower inositol phosphate isomers (InsP2-InsP5) in the resulting progenies is limited. Therefore, MIPS1
Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional
Altering the level of phytic acid phosphorus by nutritional means had no effect on the ability of soybean (Glycine max L. [Merr.], cv ;Williams 79') seeds to germinate under laboratory or greenhouse conditions. Dry matter moved out of the cotyledons at similar rates whether the germinating seeds
Phytic acid, a phosphorylated derivative of myo-inositol, functions as the major storage form of phosphorus in plant seeds. Myo-inositol phosphates, including phytic acid, play diverse roles in plants as signal transduction molecules, osmoprotectants, and cell wall constituents.
The time-course of phosphorus (P) accumulation in the phytic acid fraction of developing soybean (Glycine max [L.] Merr. cv ;Williams 79') seeds as well as the relation of phytic acid P to total P content were determined. Phytic acid was detected early in embryogenesis in field-grown soybeans and
The relationships between nutrient P and Zn levels and the phytic acid, P, and Zn concentrations in soybean (Glycine max L. Merr. cv ;Williams 79') seed were studied. Phytic acid increased linearly from 4.2 to 19.2 milligrams per gram as nutrient P treatment was varied from 2.0 to 50 milligrams per
Phytic acid (PA, myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is important to the nutritional quality of soybean meal. Organic phosphorus (P) in PA is indigestible in humans and non-ruminant animals, which affects nutrition and causes P pollution of ground water from animal wastes. Two novel
BACKGROUND
Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or
A single, recessive mutation in soybean (Glycine max L. Merr.), which confers a seed phenotype of increased inorganic phosphate, decreased phytic acid, and a decrease in total raffinosaccharides, has been previously disclosed (S.A. Sebastian, P.S. Kerr, R.W. Pearlstein, W.D. Hitz [2000] Soy in
Two low-phytate soybean (Glycine max (L.) Merr.) mutant lines- V99-5089 (mips mutation on chromosome 11) and CX-1834 (mrp-l and mrp-n mutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans,
In this paper, we describe a study concerning the determination of some characteristics of soybean seedlings and the detection of acid phosphatase activities towards different substrates during the germination. Enzyme activities with p-nitrophenylphosphate (pNPP) and inorganic pyrophosphate (PPi) as
Germination and fermentation were investigated as methods of improving the nutritional and organoleptic properties of soybean and African breadfruit seed based food formulations. Four products consisting of germinated-fermented soy-breadfruit seeds (GFSB), nongerminated-fermented soy-breadfruit
Soybean glycinin (11S) and beta-conglycinin (7S) were subjected to select chemical treatments at various concentrations and resulting changes in protein structures were investigated by circular dichroism (CD) and fluorescence spectrometry. Fluorescence quenching results indicated that urea >/=3 M
The composition of glyphosate-tolerant (Roundup Ready) soybean 40-3-2 was compared with that of conventional soybean grown in Romania in 2005 as part of a comparative safety assessment program. Samples were collected from replicated field trials, and compositional analyses were performed to measure